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ABSTRACT 

The theory is discussed of individual tree compatible taper equations which 
predict the diameter along the stem as a function of tree height, diameter at 
breast height, and length, and which can be integrated to give a total volume 
equation equal to an existing volume equation. Existing non-linear forms of 
compatible taper equations were estimated for Pinus radiata D. Don but were 
unable to illustrate the neiloid shape of the butt, common in old crop P. radiata. 
Polynomial compatible taper equations were developed to provide greater flexi­
bility in defining tree shape. These had standard errors of estimate of diameter 
of 1.4 cm for young crop and 2.4 cm for old crop radiata pine, and they had all 
the desirable characteristics of compatible taper equations. 

INTRODUCTION 

In a series of papers Demaerschalk (1971, 1972a, 1972b, 1973a, 1973b) and Munro 
and Demaerschalk (1974) introduced taper equations for the stems of trees which, 
when integrated to give a sectional volume equation, calculated a total volume equal 
to that of an existing total volume equation. The equations were termed "Compatible 
Taper Equations". In their basic form they predict the square of diameter along 
the stem as a function of length from the tip, diameter at breast height and 
total height of the tree. Their usefulness is apparent where total volume equations 
already exist and will continue to be used in the future. Because of their properties, 
compatible taper equations are ideal for use in log cutting-pattern optimization pro­
cedures, such as that by Pnevmaticos and Mann (1971), or in calculating the proportions 
of volume in the various utilization categories, as required by forest inventory. It was 
for these two reasons that the present study investigated compatible taper equations for 
radiata pine (Pinus radiata D. Don) in Kaingaroa Forest, and extended their theory. 
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DEVELOPMENT AND APPLICATION OF NEW THEORY 

Existing Theory 

The equations suggested by Demaerschalk were non-linear and had several important 
and desirable properties. 

1. They can be integrated to calculate sectional volumes, and the total volume calculated 
is compatible with an existing total volume equation. 

2. The calculated diameter is strictly non-negative over the interval from stump to total 
height. 

3. The function of d2 is a monotonic non-decreasing function. This implies that the 
calculated volume of a log cut from the top of the tree will never be greater than 
one of equal length cut below it. 

4. The diameter at the tip is 0. 

5. The simplest of the equations can readily be arranged to give merchantable length 
as a function of merchantable diameter, merchantable volume as a function of 
length or diameter. 

The standard errors (S.E.) of estimate of diameter* along the stem are small—as 
good as, if not better than, other non-compatible taper equations which often do not 
have all of the above properties. To recapitulate the existing theory, and in extending 
the theory the following notation will be used. 

Let V = total volume inside bark (m3) 

D = diameter breast height (dbh) outside bark (cm) 

H = total height (m) 

/ = distance from the tip of the tree (m) 

d = diameter inside bark at /m from the tip (cm) 

Vm = volume inside bark from the tip of the tree to a point / with diameter 

inside bark d 

K = (TT/4) IO"4 

The general expression of a non-linear taper equation is 

r / IP 
i - 1 ( i ) 
I H J . 

(P+D V 
d2 = — 

K H 
where p is a "free" parameter to be estimated from taper data. 

* The S.E. of estimate of diameter was calculated by Demaerschalk, and throughout this 
paper, from the formula 

SE (de) = [ 2 ( d - d ) 2 / ( n - m - l ) ] i 

where d, d are the actual and predicted diameters inside bark, 
n = no. of observations, and 
m = no. of "free" parameters in the taper equation. 
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It should be noted that V can be calculated from any existing volume equation. That 
this is compatible should be clear, for multiplying by K and integrating between the 
limits of 0 and h gives 

Vm = | (—) 10-* d2 d/ 
Jo 4 

fh (P + i) v r / I p 
= I K I — I dl 

Jo K H LHJ 

f / 1P+1 h 

= I V I H J I 
When total volume is required, h = H, 

Vm = V 

If the function to estimate V is formed from the sum of independent functions e.g. 
V = fi(D,H) + f2(D,H) then additional "free" parameters can be introduced to the 
taper equation and estimated from taper data, i.e.: 

(P + i) fi(D,H) r / 1 p ( q + 1 ) f2(D,H) r / 1 * 
d2 = I — I + I - I (3) 

K H I H J K H IH J 
The principles should be quite clear. 

The Fit of the Non-Linear Taper Function to Kaingaroa Data 

Radiata pine in Kaingaroa Forest is divided into two crop types, old crop planted 
prior to 1940 and young crop. The old crop especially contains many malformed stems 
but this study is confined to the taper of "normal" stems, that is, single-leader straight 
trees with no large deformities. Large numbers of trees have been sectionally measured 
over the past 20 years and the measurements of some 914 old crop and 353 young 
crop trees were selected for this study. Total volume equations were estimated for 
both old and young crop, and were found to be significantly different. Duff's (1954) 
volume tables were not used as their data were entirely old crop and had few trees 
greater than 45 m in height and 75 cm dbh. The selection and distribution of data for 
this study, and the volume equation analysis will be described elsewhere (Goulding 
and Murray, in prep.). Briefly, the old crop data consisted of trees with a range of dbh 
of 15-102 cm, and in height of 14-56 m; young crop with a range in dbh of 15-64 cm, 
and height of 12-41 m. 

The total volume equation selected for young crop radiata was 

V ='0.25934 D2H IO"4 + 0.13407 H 10~2 (4) 

SE(V) = 0.2423 D2H IO"5 cu m. 

The parameters p and q of equation (3) were calculated, where fi(D,H) == 
0.25934 D2H IO"4 and f2(D,H) = 0.13407 H 10~2. However, one of the parameters, 
q, was not significantly different from 0 at the 95% level, as was the case for a 
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similar equation in the old crop. Therefore the parameter p in equation (1) was 
estimated alone. 

2.5466 V f / 1 1M66 

cP = — I — I 
K H I H J 

f / T 2.5466 

v m = v i — I 
I H J 

S.E.(p) =0.005022 S.E.(d2) = 66.56 
The S.E. of the estimate of d, SE(de), was calculated directly to be 1.40 cm. Fig. 1 

illustrates the taper curves for various trees. 
Although the SE(de) is very low, Fig. 1 shows the major limitation of the non­

linear taper equation. The shape makes no allowance for butt-swell which is quite 
noticeable in radiata. Moreover, even when 2 "free" parameters were calculated the 
shape was the same, indicating that the class of functions was not flexible enough to 
account for any variations from the basic shape. 
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FIG. 1—Young crop non-linear taper curves for selected values 
of dbh and height. 
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New Theory 

There exist many other forms of compatible taper equations. For example, it is 
possible to modify the taper equation suggested by Kozak et al. (1969a, 1969b) to 
make it compatible with the volume equation V = aG + aiD2H where a0,ai are the 
estimated regression coefficients. Taking the original taper equation — 

d2 f / 1 f / 1 2 

— = b0 + bi I — I + b , I — I (6) 
D- L H J I H J 

V = | K d 2 d / 

= K D 2 [ b 0 H + (b iH) /2 + (b 2 H)/3] 

= ai' D 2 H 

This lacks only the constant term a0 which can be supplied by the addition to the 
taper equation of the term b3/D2H. The modified taper equation is thus — 

d2 f / 1 f I 1 2 ba 
_ = ho + bi I — I + b21 — I + — (7) 
D- L H J L H J D 2 H 

where b-j = a0/K 
b0 = a i / K - b i - b 2 

This equation can be solved by a conditioned linear least squares routine. However, 
when the equation was fitted to the data, despite a low SE(d ), the basic shape was 
deficient in the region near the tip of the tree, failing to have 0 diameter at the tip 
and often having negative values of d2 for various combinations of D and H. 

In general, a taper equation is required of the form 

V 
d2 = f 

KH 
— I (8) 

L H J 
f / l f / 1 

where f I — I is a polynomial in I —- I such that the, coefficients of the 
L H J L H J 

polynomial of degree n (bi) satisfy 

n bi 
2 = 1 

i=o i + 1 

An alternative form is 

v r r /1 2/ i 
d2 = — Lf i — i + — J 

K L H J H 2 

n bi 
where X = 0 

i=o i + i 

ii By taking the polynomial f | — I to have zero intercept, the taper equation will have 
L H J 

zero diameter at the tip of the tree. Both equations (8) and (9) are compatible taper 
equations, and can be fitted to any order of polynomial required by the tree shape. 



318 New Zealand Journal of Forestry Science Vol. 5 

To illustrate with equation (8) 
v r r /1 r n 2 r n ni 

d2 = — Lbi I — I + b2 I — I + . . . + bn I — I J (10) 
KH LHJ I H J I H J 

rh 

Vm = K | d2 . d/ 

V f bi/2 b2/3 bn/n+1 1 h 

= — + + . . . + I 
H [ 2H 3H2 ( n + l ) H n J 0 

n bi 
For total volume, h = H, and as 2 = 1 

V f bx b2 bn 1 
Total volume = — I [— + — + . . . + ] H I 

H I 2 3 (n+1) J 

= V 

Imposing the conditions on (8) and rearranging to obtain the equation in a linear 
form is straightforward and results in equation (11) which can be solved using a 
conditioned stepwise regression procedure. 

d2KH 2/ f / 2 2/1 / :} 2/ 1 
b'2 I 3(—) I + b#

3 I 4(—) I -I- . . . 
V H I H H J H HJ 

f / n 2/1 
+ b ' „ l ( n + l ) (—) - — I (11) 

I H H 

The coefficients of (10) can be readily obtained for 

bi = 2 (1 - 2 b'i 
i=2 

b2 = 3 b#
2 

bn = (n + l)b'„ 

Equation (9) rearranged in linear form is very similar, the independent variables 
being the same, the dependent variable being 

d2K 2/ 

V H2 

Results of the New Theory 
Equation (11) was fitted to 2250 sets of observations in young crop radiata pine 

using the volume equation (4) and estimating 4 coefficients to give a 5th degree 
polynomial. All the coefficients were significant at the 95% level. 

f / 5 / 4 / 3 / 2 / 1 
d2 = I 22.686(—) - 44.310(—) + 26.708(—) - 3.5452(—) + 1.1714 — I X 

I H H H H H J 
(0.33021 D2 + 17.070) (12) 

SE(d2) = 0.7792 sq cm; SE(de) = 1.43 cm 
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The merchantable volume is then 

f / 6 / 5 / 4 I 3 

Vm = V. I 3.7810 (—) - 8.8621 (—) + 6.6771 (—) - 1.1817 (—) 
I H H H H 

/ 2 

+ 0.58571 (—) 
H 

The curves for three trees are illustrated in Fig. 2. 
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FIG. 2—Comparison of Duff's 1954 curves and new curves from 
equation (12) for young crop. 

Neiloid, paraboloid and conoid sections are clearly visible. Because they are still 
widely used today, Duff's (1954) taper curves are plotted for comparison. For a given 
dbh and height they indicate less volume than the new curves. Apart from an indentation 
at about 3 m height, they are remarkably similar in shape. The new equation perhaps 
overpredicts diameter in the top 20% of larger trees, but only slightly. The average 
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bias was calculated for 10% height intervals (as a % of total height) and is given 
below (bias = predicted — actual) 

10% Height 

interval 95 85 75 65 55 45 35 25 15 5 

Bias (cm) +.10 +.10 +.04 +.02 +.04 +.02 +.01 +.01 .00 .00 

d2K 2/ 
When the term — was used as the dependent variable, certain problems 

V H 2 

arose. The cubic term was found to be non-significant, but the next equation estimated 
without this term had all the terms significant. 

d2 = 
/ 5 14 I 2 I 2/1 

0.23337 (—) - 0.30488 (—) + 0.14879 (—) - 0.055030 (—) + — I X 
H H H H H2J 

(0.33021 D 2 H + 17.070 H) (15) 

This equation has a low SE(de), 1.40 cm, and has a similar shape to the curves of 
Fig. 2, except that it predicts negative values of d2 for taller trees (40 m) in the 
region of the tip of the tree. This size of tree is at the edge of the data used to estimate 
the coefficients as the tallest young crop tree was 41 m. However, this feature was still 
highly undesirable. Calculating the best regression with one less term increased the 
SE(de) by 12% to 1.57 cm. These curves are illustrated in Fig. 3, the equation being, 

f / 5 I 2 I 2/1 
d2 = I 0.0085000 (—) + 0.040827 (.—) - 0.030056 (—) + — I 

I H H H H 2 J 

(0.33021 D 2 H + 17.070 H) (15) 

DISCUSSION 

For young crop radiata pine this equation was not as good as (12). Perhaps it would 
have been better to include higher order terms for independent variables as used by 
Bruce et al. (1968). However, the above discussion should illustrate some of the possible 
features of the equation. The same procedure was repeated for some 5360 sets of 
observations on old crop radiata pine, but no problems were encountered with either 
form of equation. Both had all terms to ( / /H) 5 significant at 9 5 % level and both were 
strictly non-negative for all tree sizes likely to be encountered now and in the future. 
Even so, the regression of the form of (8) had a smaller SE(dJ = 2.44 cm than that 
of the form of (9) with a SE(de) = 2.69 cm. The maximum bias at the top 10% of 
the tree was 0.21cm in equation (8), rapidly decreasing to negligible quantities over 
the lower portion of the tree. The alternative equation had even less bias, 0.14 cm at 
the top 10%. 

It is felt that the new curves introduced above are a substantial improvement on 
the non-linear forms, as they more nearly represent tree shape. Their fit in the lower 
and middle regions of the tree is very good and the bias in the upper portion is very 
small. The SE(de) of 1.4 cm for young crop and 2.4 cm for old crop are comparable 
to those of the non-linear taper equations. They are calculated from raw data, unlike 
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FIG. 3—Taper curves from equation (15) for young crop. 

70 

those calculated by Demaerschalk (1972a) which were calculated from the deviations 
of the calculated curves from hand-smoothed curves. 

The calculated coefficients are for general volume and taper equations for Kaingaroa 
Forest. As such they represent the average shape of trees in Kaingaroa Forest and 
individual stands may differ from this average, but provided they are used in a context 
where the stand-to-stand variations average out they should be useful. The flexibility 
of the form of the equations is such, however, that they are ideally suited for experi­
mental trials where the form of the trees from one treatment is likely to be different 
from that of another. In this case individual volume and taper equations should be 
estimated directly from the data of each treatment. Higher order polynomials could be 
tried if necessary; they are not used in this study as the shape and accuracy already 
obtained was adequate for the use to which they will be put. 

CONCLUSION 
The compatible taper equations appear to be very successful both in their freedom 

from undesirable characteristics and in their accuracy. They perhaps owe this success 
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relative to other taper equations to the fact that incorporating a volume equation 
appears to determine the size of the tree, whilst the "free" coefficients of the taper 
equation can then estimate its shape. As Munro and Demaerschalk (1974) pointed out, 
the best fit is achieved for total volume, and then the fit for diameter is optimized. 
This should be appreciated by the forester whose major use for the equations will be 
for estimating total volume, followed by volumes in size assortments. 
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