
No. 1 89 

CUBIC SPLINE CURVES AND CALCULATION OF VOLUME 

OF SECTIONALLY MEASURED TREES 

C. J. GOULDING 

Forest Research Institute, New Zealand Forest Service, Rotorua 

(Received for publication 30 September 1977) 

ABSTRACT 
When stem volume is estimated from measurements of cross-sectional area 

using Smalian's composite formula and data from Pinus radiata in New Zealand 
errors in volume rapidly increase as intensity of measurement decreases, 
exceeding 8% when the interval between measurements is greater than 5 m. 
Newton's composite formula or Romberg's method can halve this error but are 
applicable only when the intervals between measurements are uniform. Inte
grating a cubic spline curve fitted through the data points can estimate volume 
with only 60% of the error of Smalian's formula. This function is suited for use 
with dendrometer measurements of standing trees and, provided that the 
distances between measurements are less than 5 m, errors can be confined to 
less than 5% of the volume. 

INTRODUCTION 
Where a tree or a log has been measured for diameter at intervals along its length, 

its volume has been estimated either from formulae or with graphical methods. Smalian's, 
Huber's and Newton's composite formulae are most commonly used while the frustum 
of a cone has been applied to a lesser degree. All of these are well described in mensura
tion text books (see Husch et al., 1972). Newton's formula is generally regarded as the 
most accurate followed by Huber's. 

Where trees have been measured with irregular section lengths, as in the dendrometry 
of standing trees, Newton's and Huber's formulae cannot be applied, whereas Smalian's 
formula can be used. Graphical methods may be used to overcome the large errors that 
can occur, for example that by Reineke (1926) and the Taper Line method of Gray 
(1956). 

Carron and Mclntyre (1959) found errors of —2% when Huber's formula using 
3 m (10 ft) sections was compared to a standard volume using 0.3 to 0.45 m (1 -1 i ft) 
sections in "Pinus radiata D.Don. Young et al. (1967) using water displacement as a 
standard obtained average errors of —3.6% to —5.1% for Huber's and +8.7% to 
+ 10.0% for Smalian's on 4.9m (16ft) logs, with maximum individual errors of +44% 
for Smalian's and +15% for Huber's method (all species). On 1.2 m (4 ft) logs, average 
errors were —3.5% and —4.6% for Huber's and Smalian's formulae respectively. 

Dargavel and Ditchbourne (1971), also using water displacement, found that 
Smalian's formula with measurement intervals of 0.9m and 1.6m gave unbiased 
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estimates of the volume of small P. radiata trees. 
Ellis and Duff (1973) reported on a comprehensive study involving 450 trees in 

New Zealand. They used trees measured every 0.3 m (1 ft) as their standard and found 
that Newton's and Huber's formulae gave errors which increased gradually from +0.2% 
and —0.4% with 1.2 m (4 ft) sections to 3.0% and —2.9% with 6.1m (20 ft) sections. 
Smalian's on the other hand gave errors which increased rapidly from 1.5% with 
1.2 m sections to 6.1% with 3 m sections and then to 14.7% with 6.1m sections. 

Theory 
A stem of a tree has been thought of as being formed from a composite of geometrical 

solids; a neiloid frustum at the butt, a paraboloid frustum in the centre and a cone at 
the tip. Grosenbaugh (1966) noted that these shapes are obtained by rotating around 
the x axis a curve of the general form 
y2 = pxr 

where y is the radius of the stem 
x is the distance from the tip 
p and r are constants, the latter denning the shape of the solid. 

The volume can thus be found from the resulting solid of revolution. However, this is 
not a precise definition of the problem of calculating volume, as the point where one 
shape gives way to another remains undefined. Moreover, as foresters are only too well 
aware, a perfectly defined mathematical shape does not approach the reality of a rough 
log, measured with some error at infrequent intervals along its length, sometimes under 
trying conditions. A more realistic definition is as follows. 

The problem of mathematically defining the shape of the stem with a view to 
calculating its volume is that of finding a "smooth" function of cross-sectional area in 
terms of length (1) along the stem, where the true form of the function f(1) is unknown 
but where cross-sectional area can be evaluated at given points on the stem (albeit 
with some measurement error). This smooth function can then be integrated to- give 
the volume of the stem, interpolated to derive diameters between measurements, or 
differentiated to give rates of taper at given points. 

Numerical Quadrature enables the integral of a function to be estimated and an 
application to trees was recognised by Reineke in 1926 with his graphical method. 
However, since the advent of the electronic computer, methods of numerical analysis 
have been vastly improved. 

Smalian's and Newton's composite formulae are equivalent to the Trapezoidal rule 
and Simpson's rule respectively, which belong to a family of estimators known as the 
Newton-Cotes formulae. Newton's formula owes its success over Smalian's because it 
approximates each segment of f(l) by a second order polynomial, whilst Smalian's 
formula is a simple line segment. There are two sources of error in numerical quadrature 
methods; truncation error caused by using a simple approximating formula when a more 
complex one is better, and "noise" caused by errors in the data, round-off error, etc. 
A further method, termed Romberg's method, uses an estimate of the truncation error 
in the Newton-Cotes formulae to provide a better estimate of the integral. This method 
has been applied to log volume calculations by Goulding (1971) and is described 
in most texts on Numerical Analysis, e.g. Wilf (1967). 
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/ V / 2 
To show the order of error between the three methods, the integral j s inxdx 

was estimated using 8 sections by Smalian's rule, Newton's rule and Romberg's method, 
Table 1. 

TABLE 1—The integral of sin x from 0 to 77/2 

Smalian's Rule 

Newton's Rule 

Romberg 's Method 

Value 

0.996786 

1.000134 

1.000001 

Error 

0.003214 

0.000134 

0.000001 

Romberg's method has the limitations that the number of sections used must be a 
power of 2 and that the section lengths must be equal. This does not preclude its use 
several times over parts of the stem, for example the volume of a tree 42 m long 
measured every 4 m could be evaluated by Romberg's method for the first 8 sections and 
again for the next 2 but using Smalian's for the last. This is how Romberg's method is 
applied in the remainder of the paper to estimate the volume of trees with a fixed 
number of measurements. 

The Natural Cubic Spline Curve 

The difficulty imposed when trees have been measured at irregular intervals along 
the stem, e.g. by optical dendrometer, can be avoided by the use of a natural cubic spline 
curve, and the large errors introduced by the use of Smalian's formula avoided to some 
extent. The use of a computer to perform the calculations is essential, but not 
only can the volume of the stem be obtained from the integral but the cross-sectional 
area and rate of taper at any point can be obtained as a by-product. 

A spline is a long piece of thin wood or other flexible material used by draughtsmen 
to fair-in a smooth curve between specified points termed "knots". A mathematical spline 
curve approximates the draughtsmen's spline by a pieeewise polynomial, usually a 
different polynomial for each arc between pairs of points. A cubic spline uses a cubic 
polynomial. Each pair of adjoining arcs about a data point fits the data point exactly 
and has the same value of the 1st and 2nd derivatives at that point. The resultant 
composite curve appears smooth to the observer. 

Mathematically a natural cubic spline function S(x) is characterised by three 

properties. 
1. S(x) is given in [xi, Xi+i}, x± <x 2 <x n by some polynomial with a 

maximum degree of 3. 
2. S(x), its first and second derivatives are continuous on the interval (—00, 00). 
3. S(x) is a line segment in the intervals (—00, xx) and (xn, 00). 

Furthermore the function is "smooth" in the sense that fxn (S" (x))2 dx is a 
J xi 

minimum, where the double prime denotes the second derivative. 
Cubic spline functions owe their popularity to their best approximating properties 

for either the interpolating value, the value of the 1st and 2nd derivatives at a given 
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point on the curve, or the integral over the interval. They are best in the sense that 
they can best approximate interpolated and integrated values of an arbitrary class of 
smooth functions though for a particular use a better approximation method may exist. 

Other spline functions exist and are receiving wide application in the estimation 
of the form of both mathematical functions and solid objects. Wahba (1976) used 
"Histosplines" to fit a curve to a histogram and obtain an empirical probability density 
function; Clark (1976) uses "B-splines" to represent the surfaces of solid objects in a 
three-dimensional computer design system. Sommers (1976) noted the application of 
spline curves in Forest Meteorology. 

In this application a natural cubic spline curve has been fitted to the measurements 
of the cross-sectional area at various points along the stem of the tree and the volume 
obtained from the integral of the curve. The method of calculation was that given 
by Greville (1967) who' also gives a theoretical justification for the curves. Ahlberg 
et al. (1967) give a simpler algorithm in a general reference book on spline curves. 

METHOD 

To illustrate how beneficial the use of a natural spline curve could be in calculating 
volume a small study was carried out on a sample of trees from the study reported by 
Ellis and Duff (1973). Data from 48 P. radiata trees were selected, the distribution of 
heights and dbh's given below. 

TABLE 2—Distribution of data 

Total Height 

Frequency 

Dbh (cm) 

Frequency 

(m) 15 

7 

20 

13 

20 

7 

30 

8 

25 

8 

40 

9 

30 

7 

50 

9 

35 

4 

60 

6 

40 

5 

70 

3 

45 

6 

50 

4 

The trees selected were limited to< those of normal form, that is reasonably straight 
stems with single leaders. Diameter overbark had been measured at 0.3-m intervals along 
the stem, measuring on nodes and swellings if the measurement point occurred there. 
A caliper was used and only one measurement taken. The volume of each tree was 
calculated by Newton's and the Cubic Spline formulae using all measurements. The 
difference between the methods averaged less than 0 .1% and it was concluded that 
the level of intensity of measurement was more than adequate to obtain a true estimate 
of volume. Any remaining errors would be due to "noise", that is measurement errors, 
eccentricity in the cross-section, round-off errors, etc., and would not be removed by 
using a different formula or increasing the intensity of measurement. As there had 
been no attempt to avoid "unrepresentative measurements" the volume calculated was 
an estimate of the true volume of the tree. 



No. 1 Goulding — Cubic Spline Curves 93 

To investigate the effects of the method of calculation and the intensity of measure
ment the volumes of the trees were then recalculated for varying distances between 
measurements in four ways. 

(Ai + A1 + 1) 
1. Smalian's formula L 

2 
2. Spline Curve Integration 

( ^ + 4 A i + 1 + A i + 2 ) 
3. Newton's formula L 

3 
4. Romberg's method 
where Ai = Cross-sectional area over bark at \th point of measurement 

L = distance between measurements. 
Volumes were calculated for each method for varying intensities of measurement, 

using every 2nd, 4th, 6th . . . 20th measurement and the errors obtained as a 
percentage of the volume calculated from using all measurements. In addition, the 
traditional New Zealand Forest Service method had been used and its average error 
obtained. Here, diameters were measured from the butt every 3 m (10 feet) for trees 
taller than 17 m, every 1.5 m for trees shorter, with additional measurements at 0.15, 
0.75 m and 1.5 m; Smalian's formula was used for all sections except the top where 
a conic formula was applied. A final method tested was the Taper Step method as 
specified by Whyte (1971; p. 77). Diameters were measured at 0.6m and 1.4m above 
ground and then next diameters taken to given taper steps of 2.5 cm if the last diameter 
was less than 25 cm, 5 cm if the last diameter was greater than 25 cm. The volume of 
each section was calculated using the Conic formula: 

(Ai + A1 + i + VAi Ai + i ). L/3 
By and large this procedure ensured that internodal diameters were used, and would 
by no means be far from reality when compared to the field procedure implemented 
in the Forest Service. 

The average number of measurements used in each method and intensity was also 
calculated. 

RESULTS 
In Fig. 1 the average absolute percentage errors were plotted against the distance 

between measurements. Except for the Forest Service and Taper Step methods which 
underpredicted, all other errors were overpredictions. 

The Forest Service method had a percentage error of — 0 . 3 % ± 0 . 5 7 % at 9 5 % 
confidence level with an average number of measurements of 13.5. The Taper Step 
method as specified by Whyte had a percentage error of —3.46% dz 0.75% for 12.5 
measurements. By averaging the number of measurements used for each intermeasure-
ment distance, an expression of the work content at each level of accuracy was obtained 
and illustrated in Fig. 2. 

As can be seen, where the distance between measurements is less than 2 m, all four 
methods have errors less than 2%. However, increasing the interval between measure
ments rapidly increases the percentage error of volume calculated by Smalian's method, 
so that 6 m intervals have errors of about 10%. This is comparable with the results in 
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the literature given in the Introduction. 
The spline curve volume error is on average about 60% of the equivalent error 

when using Smalian's formula. Even where the section length is 5 m, the error is only 
about 5%. Still less error can be obtained using the composite Newton's formula and 
Romberg's method, the latter having errors only 85% as large as those when using 
Newton's formula, which has errors only 50% the size of the equivalent error of 
Smalian's formula. Where sectional measurements are taken less than 2 m apart, the 
errors involved in the spline curve, Newton's formula and Romberg's method would 
be due to "noise" rather than truncation error due to an inadequate approximating 
formula or to an insufficient number of measurements when taken at strictly equal 
intervals. This implies that no improvement would be obtained with a different formula 
or with a higher intensity of measurement. 

None of these four comparisons takes into account varying the location of the 
measurements. The Forest Service method concentrates extra measurements at the butt 
of the tree, whilst the Taper Step method has the frequency of measurements proportional 
to the taper of the tree. The error of between —0.9% and + 0 . 3 % for the traditional 
Forest Service method was the smallest error of all procedures at an equivalent intensity 
of measurement. The Taper Step method, by concentrating at mid-internodes and 
using a conic formula, has an error between — 4 . 1 % and —2.7%, comparable to that 
when using Smalian's formula. The equivalent errors of the Spline Curve, Newton's 
and Romberg's method were 1.8%, 1.4%, and 1.2% =b 0.8% respectively, assuming 
that the same number of measurements was used. 

The variances of the percentage error were also calculated and plotted (Fig. 3). The 
variances of the errors in the spline curve, Newton's formula and Romberg's method 
were almost identical, and only those of Newton's formula have been plotted for 
clarity. 

The variance of Smalian's method was higher than the other three methods, indi
cating that individual tree estimates of volume were likely to be less reliable than the 
other methods. There is no theoretical justification for the Taper Step method to> have 
a lower variance of errors than the other methods, and as can be seen it is comparable 
to that obtained using Newton's formula, though lower than that of Smalian's. 

DISCUSSION 

The results indicate that Newton's and Romberg's method calculate volumes with 
smallest errors for trees measured at regular intervals. However, by concentrating 
measurements at the butt section the New Zealand Forest Service method outperforms 
all methods at the same level of intensity of measurement, despite using Smalian's 
formula. It achieves such a low level of error that improving the formula would not 
give a perceptible increase in accuracy. By increasing the section length of the Forest 
Service method and using Newton's or Romberg's method to calculate the volumes, the 
work content could be reduced for small expense in accuracy. The Taper Step method 
performs poorly, firstly by taking measurements at mid-internodes to give a biased 
underestimate of tree volume, and secondly by concentrating measurements at the top, 
due to changing the taper step size when the large-end diameter decreased to below 
25 cm. It was estimated that 50% of the measurements were spent calculating less 
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than 5% of the total volume and confirms practical experience. A modification of the 
taper step method is useful in badly malformed stems where fixed distances between 
measurements can be difficult to implement. Where a sharp reduction in diameter 
occurs the stem should be measured directly above and below the sudden taper. Other
wise measurements should be taken at stump height, half breast height, breast height 
and about 3 m. Over the remainder of the stem with a gradual taper, measurements 
should be made at regular intervals corresponding to the level of accuracy required. 
If the true volume is required, then measurements must not be confined to the mid-
internodes, though points with a severe abnormality in cross-section should be avoided, 
for example, deep scars and local large swellings. 

The cubic spline curve estimates volume with more accuracy and greater precision 
than Smalian's formula. It can provide a better model to interpolate diameters than 
the assumption that the segments between measurements are frusta of cones (diameter 
linearly related to length) or frusta of parabolas (cross-sectional area linearly related to 
length). Figure 4 illustrates the profile of a tree 23.5 m tall, with a d.b.h. 33 cm and 
cross-sectional areas measured every 0.3 m and the estimated profile based on a cubic 
spline curve fitted to 12 arbitarily selected points ("knots"). The sinuous nature of the 
spline curve can be seen, especially that induced by the measurements at the base of the 
tree and at a measurement at 12 m on one of the nodes. 

These tests of the spline curve have been based on normal trees where a smooth 
stem profile is likely to be applicable. In practice it has been found that some combina
tions of malformation and location of measurements cause the spline curve to estimate 
interpolated diameters less than satisfactorily over parts of the stem. For example 
when long and short intervals between measurements are side by side, oscillations in 
the interpolated curve can occur, as in Figure 4 at the butt of the tree, where "knots" 
have been taken at 0.0 m, 0.3 m, 1.4 m and 3.0 m. This occurs infrequently and is due 
to the requirement that the curve be "smooth". With some heavily malformed trees, 
a form with a discontinuous first derivative approximated by piecewise line segments 
may be more appropriate. Alternatively separate spline curves can be fitted to the data 
on either side of the malformed section and the first derivatives estimated from the 
spline curves at the junctions. A further spline curve can be fitted over the malformed 
section using these first derivatives at the end points. The resultant composite curve 
would have a continuous first derivative over the whole tree, but have discontinuities 
(usually large) in the second derivative at the junction points. 

A program has been written to calculate the total volume of a tree (inside and 
outside bark) using a natural cubic spline curve (Deadman, 1975). In addition to 
calculating total volume, the spline curve is used to provide an interpolation technique 
to estimate volumes to given lengths or merchantable diameters not already measured, 
subject to any user-specified conditions. For example, ii the user specified L0.5; DI 250; 
(L0.5;DI250; >4.0) the program would calculate the volume above a stump height 
of 0.5 m to an inside bark diameter of 25 cm provided the log length between stump 
height and diameter inside bark of 25 cm was greater than 4 m. 

Though not considered in this study, a point mentioned by Ellis and Duff (1973) 
is worthy of note. With long distances between measurements, Huber's formula is more 
robust than other formulae. They point out that even with an interval of 10 m or more, 
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the underprediction in Huber's formula was only about 5% of the total volume. With 
such a low intensity of measurement, the information obtained from the small end 
of a log or from the irregular butt end as required by Newton's or Smalian's method is 
of poor value compared to that of the midpoint. 

CONCLUSIONS 

This investigation has shown that the cubic spline curve can be useful to provide 
a "smooth" function of cross-sectional area against length for a tree with known values 
of cross-sectional area at various points along the stem. The estimate of total volume 
derived from the integral of the curve is not as good as that estimated from Newton's 
formula or Romberg's method, but better than that estimated from Smalian's formula. 

This makes the curve useful for trees which have been measured at irregular 
intervals along the stem where Newton's formula or Romberg's method could not be 
used. A drawback of the curve is that the very property of "smoothness" may make it 
inappropriate when applied to those profiles of malformed stems with rates of taper 
which abruptly change. 
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