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Characterising prediction error as a
function of scale in spatial surfaces of tree
productivity
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Abstract

Background: Two indices, the 300 Index and Site Index, are commonly used to quantify productivity of Pinus radiata
D.Don within New Zealand. Although maps of these indices exist, availability of new data and modifications to
underlying models makes a refit of these prediction surfaces desirable. Prediction errors of such surfaces have only
been reported at a plot-level scale, but their application is invariably at a larger scale where prediction accuracy should
be better. The objectives of this study were to: (i) develop updated predictive surfaces for the 300 Index and
Site Index; and (ii) characterise the relationship between prediction error and spatial scale for both surfaces.

Methods: Models were developed using a dataset of 4108 permanent sample plots from throughout New
Zealand. Productivity indices were estimated from plot measurements and environmental variables extracted
for each plot. Data were randomly split into fitting and validation datasets and surfaces developed from the
fitting dataset for the 300 Index and Site Index using partial least squares regression, ordinary kriging and
regression kriging. Prediction accuracy across a range of scales from 0.2 to 200 km was evaluated using the
validation dataset.

Results: Regression kriging was found to be the most accurate method for describing spatial variation in the
300 Index and Site Index across New Zealand. Examination of changes in prediction error with spatial scale
demonstrated a gradual decline in error from the plot level with increasing scale.

Conclusions: This study provides accurate maps of both the 300 Index and Site Index across New Zealand.
Analysis of the effects of scale on prediction accuracy indicates that 95% confidence intervals of predictions
for the 300 Index based on these maps averaged over an area of about 700 ha are half those of plot-level
predictions and halve again at a scale of about 20,000 ha. For the Site Index, the improvement in precision
with increasing scale is more gradual with 95% confidence intervals halving at a scale of about 20,000 ha
and halving again at a scale of about 250,000 ha.
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Background
The influence of climatic variables on tree growth and de-
velopment has been well documented throughout both
the growth modelling and physiological literature. It is
well recognised that factors such as air temperature, water
balance and soil nutrition regulate growth and account for
variation in productivity at a given age between sites
(Sampson et al. 2006; Bollmann et al. 1986; Jones et al.

1991; Battaglia et al. 1996; Duchesne and Houle 2011;
Kirschbaum 1999; Battaglia et al. 2004).
There are various ways in which environmental factors

can be integrated into forest growth models. Many
process-based models have been developed, ranging in
complexity from the simple light use efficiency approach
(Monteith and Moss 1977) through to more sophisti-
cated models such as 3-PG (Landsberg and Waring
1997) and models that link carbon, water and nitrogen
flows in the trees and soil (Kirschbaum 1999; Battaglia
et al. 2004). However, with a few notable exceptions
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(Landsberg and Waring 1997), these models are seldom
used as practical tools in forest management as they in-
clude too many uncertainties and require values for nu-
merous parameters that can be difficult to obtain
(Makela et al. 2000).
Empirical models of tree growth are far more widely

used within the forest industry. In these models, tree
productivity is determined from stand age using non-
linear functional forms. Variation in productivity be-
tween stands is typically accounted for by standardised
measurements of productivity at a given age (e.g. Site
Index) that can be used to adjust the trajectory of pre-
dictions through time and the asymptote.
Standardised measurements of productivity such as

the Site Index have been shown to be strongly related to
environmental factors. The recent proliferation of envir-
onmental surfaces has seen the development of national-
level spatial surfaces describing Site Index and volume
productivity indices for a range of plantation species
(Watt et al. 2009; Palmer et al. 2009b; Palmer et al.
2012). These surfaces are of considerable use to the for-
est industry as they can be used to parameterise empir-
ical growth models and provide insight into how
productivity may vary at a relatively fine scale.
In New Zealand, Pinus radiata D.Don is the most

widely planted commercial crop covering an estimated
1.6 million hectares and comprising 91% of the entire
national plantation estate (New Zealand Forest Owners
Association 2010). There are two indices commonly
used to quantify productivity of P. radiata within New
Zealand. These are the 300 Index, defined as the stem
volume mean annual increment (MAI) at age 30 years
with a reference regime of 300 stems ha−1 (Kimberley et
al. 2005), and Site Index, defined as the mean top
height1 at age 20 years (Goulding 2005). Although sur-
faces have been developed for these two important indi-
ces of P. radiata (Palmer et al. 2009b), more data have
since become available justifying a refit of these models.
Furthermore, there have been modifications to the pro-
cedures used to estimate the productivity indices. In par-
ticular, the 300 Index growth model (which is used to
derive the 300 Index from plot measurements) has been
updated, with the latest version predicting greater vol-
ume growth beyond age 25 years than earlier versions.
This means that estimates of the 300 Index produced
from early- or mid-rotation measurements have increased
uniformly by about 1 m3 ha−1 year−1. This change necessi-
tates a refit of the prediction surface as it is important that
the surface and the models used to apply its predictions
remain compatible.
Although productivity surfaces are often used across a

range of scales in forest applications, little research has
been conducted into how error associated with these
surfaces varies with scale. Errors are most often reported

at the plot level, which are typically only a fraction of a
hectare in size. However, the scale of application is more
often the stand or forest level. Stands are typically in the
tens of hectares, while forests are in the hundreds or
thousands of hectares. It would be expected that at these
greater scales, prediction errors should be substantially
smaller than at the plot scale. Quantifying the relation-
ship between error and prediction scale for productivity
surfaces would represent a considerable advance as this
would allow prediction error to be more accurately
defined.
Similar issues arise in forest inventory where there is

often a requirement to obtain predictions for subdomains
or areas of interest (AOIs) within the area covered by an
inventory. Modern forest inventories often use model-
based approaches to predict forest parameters such as
stem volume, basal area or stand density, using a combin-
ation of ground-based plot measurements and spatially in-
tense remotely sensed ancillary data. Methods of analysis
used in such inventories can include regression (Dungan
1998; McRoberts 2006) and the k-nearest neighbour
(k-nn) method (Franco-Lopez et al. 2001; Tomppo and
Halme 2004). Quantifying the uncertainty of predictions
obtained using these methods for AOIs is often complex.
Variances of estimates for individual pixels are not suited
to estimates at a larger scale (Kim and Tomppo 2006). In
principle, an estimate of the variance of the mean of a re-
sponse variable across multiple pixels can be achieved by
fitting an empirical model to the spatial variogram and
incorporating its parameter estimates into the model-
based variance. This approach was used, for example,
by McRoberts et al. (2007) for estimating the variance
of predictions for AOIs using the k-nn method.
In the current study, productivity maps of the Site

Index and the 300 Index for P. radiata in New Zealand
were developed using various analysis methods including
regression, ordinary kriging and regression kriging. The
surfaces were developed from productivity indices ob-
tained from an extensive dataset of permanent sample
plot measurements along with ancillary environmental
data from spatial surfaces. To establish variances of esti-
mates at varying spatial scales, a method using simple
empirical estimates of the prediction error variance was
applied using a validation dataset set aside to test and
validate the analysis methods. The objectives of this
study were to: (i) develop updated predictive surfaces for
the Site Index and the 300 Index; and (ii) characterise
the relationship between error and spatial scale for both
of these surfaces.

Methods
Permanent sampling plot data and preliminary screening
Stand-level data were extracted from the New Zealand
Forest Research Institute Ltd. Permanent Sample Plot
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(PSP) system (Pillar and Dunlop 1990). These data were
examined for sites that could adversely influence the in-
tegrity of the dataset. Exclusions included Nelder spa-
cing trials, oversowing, disturbance (forest floor
removal) and fertiliser (phosphorus (P), nitrogen (N) and
potassium (K) trials. For these exclusions, trial control
plots were identified and retained. Other exclusions in-
cluded data from stands planted prior to 1975 and
stands less than 7 years in age. These latter two groups
were excluded as data from young trees are inherently
unreliable and a preliminary screening of the PSP data
found that stands established post 1975 have 300 Index
values ~ 25% higher than stands established during the
1930s. This result was also noted by Kimberley et al.
(2005) who attributed the increase in the 300 Index in
more recently planted stands to improvements in genet-
ics and management. This screening process left 4108
plots available for analysis.
Following Kimberley et al. (2005), 300 Index and

Site Index values were calculated from these data. To
calculate the Site Index, a national height/age model
(an equation for predicting height for any age and
Site Index) was used. This model uses the Chapman-
Richards (Richards 1959) equation using the Site
Index as a local parameter and with both slope and
shape parameters expressed as functions of this local
parameter using an early version of the height/age
model described by van der Colff and Kimberley
(2013) of the same model form although with slightly
different parameter values. By inverting the equation,
it is possible to obtain the Site Index as a function of
age and mean top height. In our study, the mean top
height measurement closest to age 20 years was used
for each permanent sample plot. This means that for
plots with measurements made at precisely 20 years
of age, the Site Index is simply the measured mean
top height, while for plots not measured at precisely
20 years of age, the height/age model extrapolates
backwards or forwards in time to 20 years from the
nearest height measurement.
Estimation of the 300 Index, which is a measure of

stem volume productivity, is more complex because,
unlike height, stem volume is strongly influenced by
stocking and, to a lesser extent, thinning and pruning
history. To calculate the 300 Index, plot measurements
consisting of basal area, mean top height and stocking at
a known age, along with stand history information (ini-
tial stocking, timing and extent of thinnings, and timing
and height of prunings) are required. The 300 Index es-
timation procedure utilises the 300 Index model, an
empirical stand-level basal area growth model that ex-
presses basal area as a function of age, stocking, the Site
Index and the 300 Index, effectively a local site product-
ivity parameter (Kimberley et al. 2005). The model

accounts for the effects of pruning and thinning using
age-shift adjustments. The model is structured so that
for stands using the standard ‘300 Index’ regime (pruned
to 6 m height and thinned at time of final pruning so
that stand density at age 30 years is 300 stems ha−1), the
stem volume MAI equals the 300 Index parameter.
Therefore, the 300 Index is as an index of stem volume
productivity, defined as the volume MAI at age 30 years
for this standard regime. Because the model is sensitive
to departures from this standard regime (e.g. different
stand densities and different intensities and timing of
thinning and pruning regimes), and can also adjust for
the stand age, it can be used to predict the index for any
plot measurement. To do this, an iterative procedure is
used to determine the 300 Index parameter value com-
patible with the plot measurement and management his-
tory associated with the plot (Kimberley et al. 2005).

Data extraction and pre-processing
Where more than one plot estimate of the Site Index
and 300 Index had identical nominal location (easting
and northing), which sometimes occurred for field trial
data, the estimates were averaged so they aligned with
the independent variables used in the modelling of forest
productivity. Following exclusions, and this averaging,
there were 3413 independent measurements of the Site
Index and 300 Index available for modelling distributed
across New Zealand (Fig. 1).
From the co-ordinates of each of these measurements,

data were extracted from biophysical GIS surfaces that
included monthly and annual climate data (Mitchell
1991; Leathwick et al. 2002), fundamental soil layers and
land resource information (Newsome et al. 2000), vege-
tative cover (Newsome 1987), biophysical surfaces
(Leathwick et al. 2003), N and P foliar nutrition (Hunter
et al. 1991), and primary and secondary terrain attributes
(Palmer et al. 2009a). A spatial soil water balance model
(Palmer et al. 2009c) was used to determine mean an-
nual and seasonal root-zone water storage for all PSP lo-
cations. The fractional available root-zone water storage
and the maximum available root-zone water storage
were then determined from these data.
The dataset was randomly split into fitting (n = 2713)

and validation (n = 700) datasets. The validation dataset
was used to validate the models of the 300 Index and
Site Index developed using the fitting dataset.

Data analysis
All analyses were undertaken using SAS version 9.3
(SAS Institute Inc. 2008). Three different methods were
used to develop spatial surfaces of the 300 Index and
Site Index.
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Ordinary kriging
Ordinary kriging (OK) (Cressie 1990) surfaces were fit-
ted for the 300 Index and Site Index. Using the fitting
dataset, experimental semivariograms were created for
the 300 Index and Site Index using the SAS procedure
VARIOGRAM and exponential semivariogram models
fitted using the SAS procedure NLIN. These semivario-
gram models were then used to fit kriged surfaces for
the 300 Index and Site Index using the SAS procedure
KRIG2D.

Partial least squares regression
The partial least squares (PLS) regression approach used
by (Palmer et al. 2009b) was used in the current study to
predict the 300 Index and Site Index from the environ-
mental variables. The PLS procedure originally devel-
oped by (Wold 1966) provides more stable predictions

than ordinary least squares regression when the predic-
tors are highly correlated. It extracts successive linear
combinations of the predictors, called PLS factors, which
explain both response and predictor variation. The same
environmental variables selected by (Palmer et al. 2009b)
were used in the current study. The 300 Index model
used 15 continuous variables and 12 categorical variables
while the Site Index model used 13 continuous variables
and 6 categorical variables. Both models used four PLS
factors. The SAS PLS procedure was used to fit these
models.

Regression kriging
Regression kriging (RK) (Odeh et al. 1995) was per-
formed by applying ordinary kriging to the residuals of
the PLS regression models. Regression kriging predic-
tions consist of the resultant kriged surface added to the

Fig. 1 Title: Locations of PSP plots used to model P. radiata productivity
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PLS regression predictions. Regression kriging was also
tested using simpler multiple linear regression models
with limited numbers of environmental variables. How-
ever, because these models performed less well than the
PLS regression kriging models when tested against the
validation dataset, this approach was not taken any fur-
ther in this study.

Effects of spatial scale on model accuracy
The root-mean-square error (RMSE) calculated using
the validation dataset provides a measure of the accuracy
of predictions of the Site Index or 300 Index for an indi-
vidual measurement plot, which is typically only a frac-
tion of a hectare in size. However, scale of application
will invariably be much larger than that of a plot, with
prediction typically being required for a forest stand in
the tens of hectares or for a forest in the hundreds or
thousands of hectares. At these larger scales, the RMSE
is likely to provide a too conservative measure of model
accuracy as it would be expected that prediction accur-
acy should improve with increasing scale.
To investigate prediction accuracy across a range of

scales using the N = 700 observations in the validation
dataset, the following procedure was used. Square grids
of increasing scale between 0.7 and 200 km laid were
overlaid onto the dataset, and for each grid, a one-way
random-effects analysis of variance was performed, pro-
viding estimates of the variance components for between
grid-square σ 2

b and within σ 2
w grid-square variation. The

calculation of these variances followed standard proce-
dures for an unbalanced one-way random-effects model
(e.g. Searle 1971). Suppose a grid contains k squares,

with the ith square containing ni observations with
Pk

i¼1

ni ¼ N . For the jth observation in the ith square, there
is an observed value yij and a predicted value yij of the

productivity index (300 Index or Site Index) with the
error of prediction being eij ¼ yij − ŷij. The within-square

variance was calculated using

σ 2
w ¼

Xk

i¼1

Xni

j¼1

eij−
Xni

j¼1

eij=ni

 !2

= N−kð Þ

while the between-square variance was calculated
using

σ 2
b ¼

Xk

i¼1

ni
Xni

j¼1

eij=ni−
Xk

i¼1

Xni

j¼1

eij=N

 !2

= k−1ð Þ−σ 2
w

 !

=

N−
Xk

i¼1

n2i

 !

= k−1ð Þ
 !

These calculations were carried out using the SAS
NESTED procedure. To obtain stable estimates, this
procedure was repeated 1000 times for each scale using

random grid starting locations and the variance compo-
nents averaged.
The variance component estimates can be used to ap-

proximate the error in predictions from the surface aver-
aged over a grid square containing n plot-sized cells. If it
is assumed that the plots in the validation data are ran-
dom samples of the plot-sized cells within each square,
the estimated variance of the mean error of any one
square is σ 2

b þ σ 2
w=n . Because n is large for all scales of

interest, the variance of the mean error of a square can
be approximated by σ 2

b . For example, for a 10-ha stand,
n is 250 assuming a plot area of 0.04 ha, and for larger
scales, n is even larger. Therefore, the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bias2 þ σ 2

b

q
, where Bias is the average prediction bias

for the validation dataset, can be interpreted as a meas-
ure of prediction accuracy at the relevant scale equiva-
lent to the RMSE used for plot-level predictions. This
measure of prediction accuracy was calculated at each
scale for all three prediction methods for both the 300
Index and Site Index.

Results
Model comparison
Using the validation dataset, the environmental variables
used in the PLS regression accounted for 56 and 63% of
the respective variance in the 300 Index and Site Index
(Table 1). However, OK provided a considerable im-
provement in model fit over PLS, accounting for 69 and
78% of the variance in the 300 Index and Site Index, re-
spectively. Finally, the precision of RK exceeded that of
both PLS and OK, accounting for 71 and 82% of the
variance in the 300 Index and Site Index, respectively.
Maps produced using these RK models can therefore be
considered to provide the most reliable predictions of P.
radiata productivity in New Zealand yet produced.
These maps are shown in Fig. 2.
Like Palmer et al. (2009b), exponential semivariogram

models were used in the OK and RK analyses. The coef-
ficients of the OK models show that there was strong
spatial autocorrelation for both the 300 Index and Site
Index extending over tens of kilometres with relatively

Table 1 Validation statistics obtained using validation data set for
various techniques for predicting the 300 Index and Site Index.
Shown are the mean error (ME), root-mean-square error (RMSE)
and proportion of variance explained (R2)

Prediction
techniquea

300 Index Site Index

ME RMSE R2 ME RMSE R2

PLS − 0.04 4.02 0.56 − 0.05 2.84 0.63

OK − 0.01 3.40 0.69 − 0.07 2.16 0.78

RK − 0.04 3.29 0.71 − 0.05 2.02 0.82
aPLS partial least squares regression, OK ordinary kriging, RK regression kriging
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small nuggets and long ranges (Table 2). This explains
why OK works well for both variables. The coefficients
of the RK models indicate that while the regression
model removes much of the large-scale variation, there
is significant spatial autocorrelation remaining in the re-
siduals extending for several kilometres (Table 2). By ac-
counting for this, RK provided the best overall
performance.

The environmental variables utilised in the PLS and RK
models demonstrate the importance of air temperature
and annual water deficit as key determinants of both
productivity measures. Both the 300 Index and Site Index
decreased with increasing number of frost days during
summer. There was also a positive relationship between
the Site Index and maximum temperature during sum-
mer. Categorical variables included in the models are

Fig. 2 Title: Spatial variation across New Zealand in Site Index and 300 Index. Spatial variation across New Zealand in (left) Site Index and (right)
300 Index. Predictions were constrained to the potential range of P. radiata by excluding areas with mean annual temperature < 7.9 °C

Table 2 Coefficients of the models fitted to semivariograms for ordinary kriging (OK) and PLS regression kriging (RK) models for the
300 Index and Site Index

Variable Units Model Nugget Sill Range (m) Lag (m)

OK

300 Index m3 ha−1 year−1 Exponential 8.6 34.5 47,440 500

Site Index m Exponential 3.9 18.2 29,355 500

RK

300 Index m3 ha−1 year−1 Exponential 6.2 13.5 3186 500

Site Index m Exponential 2.2 6.4 2427 500

PLS partial least squares regression, OK ordinary kriging, RK regression kriging
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likely to represent surrogates for site fertility. Vegetation
cover in 1987 was also an important determinant of prod-
uctivity for the 300 Index providing a surrogate for previ-
ous land use and the cumulative effects of fertilising. Sites
that were in pasture in 1987 were more productive than
sites already established in plantation forest.

Effect of scale on prediction error
Actual values of the 300 Index plotted against their RK
predictions for the validation dataset showed a spread of
points around a linear relationship (Fig. 3a). This rela-
tionship explained 71% of the variation in the 300 Index,
while the prediction accuracy of each observation
(RMSE—the average deviation about the 1:1 line) was
3.29 m3 ha−1 year−1 (Table 1). However, when the valid-
ation data was averaged by New Zealand local authority
region, the relationship between actual and predicted
values tightened considerably (Fig. 3b). For these re-
gional means, 99% of variance was explained by the rela-
tionship and the RMSE reduced to only 0.53 m3 ha
−1 year−1. Similar results held for the Site Index where

the plot-level RMSE of 2.02 m reduced to 0.39 m for re-
gional means. This demonstrates that prediction accur-
acy is greatly dependent on the scale of prediction, with
accuracy of an individual plot being far poorer than ac-
curacy at a regional scale. In fact, the true accuracy of
regional-scale predictions would be even better than
these results suggest as they are based on the limited
sample sizes available in the validation dataset, with four
regions being represented by fewer than 20 observations.
A detailed analysis of prediction accuracy against scale

was provided by applying square grids at a range of
scales to the validation dataset. This analysis showed a
substantial improvement in accuracy with increasing
scale. At any given scale, the best accuracy was achieved
by RK followed by OK and then PLS for both the 300
Index and Site Index (Fig. 4). Prediction accuracy of the
300 Index using RK was significantly improved at a scale
of 1 km over plot-scale accuracy and continued to im-
prove substantially at increasing scales beyond this level.
For the Site Index, increasing the scale initially gave a
smaller improvement in accuracy than for the 300 Index,

Fig. 3 Title: Actual versus predicted 300 Index for the validation dataset. Actual versus predicted 300 Index for the validation dataset for (a) individual
plots and (b) averages of New Zealand local authority regions. Lines show 1:1 relationships
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but accuracy improved considerably at scales greater
than 5 km.
Results for RK across a range of relevant scales are

summarised in Table 3. In this table, scale is defined as
the length of the side of each square used in the analysis.
The area represented by a given scale could be as great
as the square of this length although, in practice, areas
of interest are more likely to be more irregularly shaped.

Therefore, the area corresponding to each scale has been
defined in Table 3 to range from that of a rectangle of
aspect ratio 2:1 with the longest side equal to the scale,
through to that of a square. The analysis shows that for
a forest stand of 25–50 ha, accuracy (equivalent to the
RMSE) compared to that of a plot (0.04 ha) improves
from 3.3 to 2.0 m3 ha−1 year−1 for the 300 Index and
from 2.0 to 1.6 m for the Site Index. For a medium-sized
forest of 2500–5000 ha, prediction accuracy improves
further to 1.2 m3 ha−1 year−1 for the 300 Index and
1.3 m for the Site Index.

Discussion
This paper demonstrates a strong link between predic-
tion error and spatial scale in maps of P. radiata prod-
uctivity produced for New Zealand using an extensive
dataset of plot measurements. Prediction errors of such
spatial models are most often reported at the scale of
the observations used in their development. However,
the analysis shows that plot-level errors for these sur-
faces are conservative as there was a marked decline in
error for both indices from the plot level to predictions

Fig. 4 Title: Accuracy of predictions across a range of scales. Accuracy (RMSE) of predicted (a) 300 Index and (b) Site Index across a range of scales
from 0.02 to 200 km

Table 3 Prediction accuracy (equivalent to RMSE) of 300 Index
and Site Index for a range of spatial scales

Scale Length
(km)

Area (ha) Accuracy

300 Index Site Index

(m3 ha−1 year−1) (m)

Plot 0.02 0.04 3.29 2.02

Stand 0.7 25–50 2.00 1.58

Small forest 2 200–400 1.84 1.54

Medium forest 7 2500–5000 1.19 1.34

Large forest 20 20,000–40,000 0.72 0.89

Region 200 2–4 m 0.10 0.19
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made by averaging across larger scales. Observations
used to develop these maps consisted of productivity in-
dices derived from a measurement of a permanent sam-
ple plot, with plots mostly of 0.04 ha in area but with
some observations consisting of measurements averaged
over an experimental trial of several plots perhaps cover-
ing a hectare or so. At this scale, prediction accuracy
defined in terms of RMSE is about 3.3 m3 ha−1 year−1

for the 300 Index and 2.0 m for the Site Index (Table 1).
These values should be doubled to provide approximate
95% confidence intervals (95% CI). Therefore, at the plot
scale, the maps predict the 300 Index with a 95% CI of
± 6.6 m3 ha−1 year−1 while the Site Index is predicted
with a 95% CI of ± 4 m (Table 3).
However, in practice, the productivity maps are likely

to be applied at scales much coarser than those of an in-
dividual plot. For example, to assist with planning and
forest management, managers may wish to characterise
the productivity of a stand or compartment within a for-
est, perhaps with an area in the tens of hectares. An-
other use of productivity maps is to estimate the
productivity of small forests or woodlots which lack
measurement plots with such stands likely to be in the
tens or at most, hundreds of hectares. In both cases, the
95% CI of predicted productivity is about ± 4.0 m3 ha
−1 year−1 and ± 3.2 m for the 300 Index and Site Index,
respectively (Table 3). Another application is to estimate
productivity of a proposed new forest planting. In this
case, areas could range from the tens to thousands of
hectares. Accuracy of the predicted 300 Index in terms
of a 95% CI will therefore range from ± 4.0 m3 ha−1 year
−1 for an area in the tens of hectares to ± 2.4 m3 ha
−1 year−1 for an area in the thousands of hectares
(Table 3). Finally, there may be requirements by agencies
or companies to provide estimates of productivity for
very large areas, e.g. for estimating carbon sequestration
at a regional scale. The analysis indicates that such pre-
dictions can be made with a high level of accuracy.
That prediction accuracy improves with scale is not

surprising. Spatial modelling techniques such as RK and
OK take spatial autocorrelation into account when
obtaining predictions. If these methods succeeded in
completely eliminating spatial autocorrelation, the
RMSE of a prediction averaged over a given area would
halve for each quadrupling in sample area. However, the
actual improvement in accuracy with increasing scale is
much smaller than this, presumably due to the effects of
spatial autocorrelation in the prediction errors. In prac-
tice, for the 300 Index surface, the RMSE halves at a
scale of 3 km corresponding to an area of about 700 ha
and halves again at a scale of about 20,000 ha. For the
Site Index, the improvement in precision with increasing
scale is even more gradual with the RMSE halving at a
scale of about 20,000 ha and halving again at a scale of

about 250,000 ha. However, these improvements in ac-
curacy with increasing scale are better than obtained for
a P. radiata wood density map where the RMSE halved
at a scale of about 50 km (i.e. 125,000–250,000 ha) and
halved again at a scale of 400 km (Palmer et al. 2013).
Most spatial modelling studies cite precision at the

scale of the individual observations used in the model-
ling. The results of this study suggest that reported
errors from spatial modelling studies are likely to be
conservative as the scale of application at the stand or
forest level is invariably greater than the scale at which
the model was developed. Similar results have been re-
ported in forest inventories used to predict forest param-
eters at varying spatial scales. For example, Breidenbach
et al. (2010) used the k-nn technique to predict standing
timber volume from airborne laser scanning data and
ground-based survey data and found that standard er-
rors of predictions were smaller at the stand level than
the plot level and smaller for stands of 4–6 ha compared
to stands of less than 2 ha.
The relative performance of the various prediction

techniques employed in this study were similar to those
obtained by Palmer et al. (2009b) who used nearly iden-
tical techniques applied to a smaller dataset. The dataset
used in the current study consisted of the data used in
the earlier study supplemented by considerable new
data. Results in terms of model fitting were better than
in the earlier study, presumably due to the higher spatial
density of the ground measurement data and perhaps in
part due to the elimination of measurement errors in a
number of plots.
Regression methods such as PLS are most suited

for situations with sparse observational data located
at least 8 km apart (Palmer et al. 2009b). However,
regression models of site productivity seldom explain
much more than 50% of the variability due to the dif-
ficulty in measuring many of the environmental vari-
ables which affect tree growth, particularly variables
associated with soil fertility. In the current study, PLS
regression explained 56% of variation in the 300
Index and 63% of the variation in the Site Index,
comparable to the levels of variation explained in pre-
vious studies using regression models such as those
described by (Watt et al. 2010). Where high-density
datasets are available, kriging can often provide better
predictions than regression models as spatial depend-
ence between points is greater when data points are
located closely together. As the dataset used here was
relatively dense, ordinary kriging gave more precise
predictions than PLS regression. Finally, RK gave a
modest but worthwhile improvement in performance
over OK in this study, especially at scales of most
interest (Fig. 4). This method combines the advan-
tages of PLS regression at predicting between sparsely
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located points with those of kriging in accounting for
short range spatial dependence in PLS error.
Using PLS and RK, the key climatic variables identified

as important determinants of the 300 Index and Site
Index largely agree with past studies. Temperature-
related variables have generally been found to have the
greatest influence on P. radiata productivity within New
Zealand (Watt et al. 2005; Watt et al. 2008; Jackson and
Gifford 1974; Hunter and Gibson 1984; Watt et al. 2010)
and were found here to be important determinants of
both the 300 Index (summer degree frost days) and Site
Index (max temperature in summer). The positive rela-
tionship often found between air temperature and tree
growth is thought to be principally driven by the length-
ening of the growing season (Lieth 1973; Kerkhoff et al.
2005). This theory is consistent with selection of the
number of frost days for the 300 Index as this variable
controls the duration over which trees can grow during
the year.

Conclusions
This paper describes accurate models that quantify
spatial variation in the 300 Index and Site Index using
the largest and most complete dataset of its kind assem-
bled for New Zealand plantation grown P. radiata. Re-
gression kriging was found to be the most accurate
method for describing this spatial variation for both
productivity indices and reported accuracies were rela-
tively high. Examination of changes in error with in-
creases in spatial scale demonstrated a gradual decline
in error from the plot level with increasing scale. For the
300 Index, the RMSE or 95% CI halve when predictions
are averaged over an area of about 700 ha and halve
again at a scale of about 20,000 ha. For the Site Index,
the improvement in precision with increasing scale is
more gradual with the 95% CI halving at a scale of about
20,000 ha and halving again at a scale of about
250,000 ha. This decline in error with increasing scale
suggests that reported errors from spatial modelling
studies are likely to exceed those that occur at the scale
of operational application.

Endnotes
1Average height of the 100 largest diameter stems

within a hectare
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