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Radial variation in selected wood properties
of three cypress taxa
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Abstract

Background: New Zealand-grown cypresses are typically harvested at 35–40 years of age; however, shorter
rotations have been proposed. The objective of this study was to evaluate the feasibility of producing structural
products from shorter rotations through examination of wood properties of younger cypress trees. A detailed
examination of radial wood property trends was necessary, and the first ring-level models for three cypress taxa
were developed because there were no predictive wood property models available.

Methods: Radial trends in wood density, microfibril angle (MFA) and modulus of elasticity (MOE) were examined
for 55 trees of three taxa (Cupressus lusitanica Mill, C. macrocarpa Gordon and Chamaecyparis nootkatensis (D.Don)
Spach x Cupressus macrocarpa). The trees, planted in row-plots, were harvested at age 21 years at which time
breast-height increment cores were extracted to determine wood properties. Rings 1 through 18 were examined in
detail and used as the basis for developing mixed-effects ring-level models.

Results: Taxon, cambial age, ring width and aspect were highly significant as explanatory variables in wood-density
models. Trees with a northern aspect (the warmest side with most sunlight) had greater density than those at the
south of the plot. Trees with a southern aspect (least sunlight) had significantly lower MOE, which was about
1–2 GPa below the average of 11–13 GPa at age 18 years. Aspect, however, was not significant in models for MFA.
Microfibril angle of the cupressus hybrid declined from about 30° at the pith to 13° near the bark, whereas for
Cupressus lusitanica, the range was about 36–16° and about 31–16° for Cupressus macrocarpa.

Conclusions: The results of this study provide a basis for determining management strategies appropriate to
structural timber production from cypress stands. Overall, forecasted ages for production of strength-grade timber
were least for the cupressus hybrid. In an application of the models, products of 6 GPa could be obtained from the
outer zones of trees of the hybrid from age 22 years and at older ages for the other taxa. Shorter rotations would,
therefore, be feasible for the hybrid taxon.
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Background
Cypress timber is known for its stability, attractive grain
and natural durability. In comparison with other species,
it has a relatively steady wood-density gradient (Brailsford
1999). The timber is commonly used for wall panelling,
flooring, architraves, skirting, furniture and interior join-
ery. It has also been reported as suitable for a wide range
of exterior uses, including exterior joinery, weatherboards
and boat building, and is an approved building species
(Haslett 1986). Timber from New Zealand-grown cypresses

is produced from trees that are typically 35–40 years of
age when harvested. However, shorter rotations of closer
to 20 years have been proposed (Brailsford 1999). The ob-
jective of this study was to evaluate the feasibility of pro-
ducing structural products from shorter rotations through
examination of wood properties of younger cypress trees.
Wood properties of particular importance to structural

products include wood density, microfibril angle (MFA)
and modulus of elasticity (MOE). Wood density is an
indicator of strength. Typically, air-dry wood density of
New Zealand-grown cypresses ranges from 475 to
495 kg.m−3 (Miller and Knowles 1996). Microfibril angle
is an indicator of stiffness and is derived from the angle
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of cellulose strands in the thickest (S2) layer of the cell
wall relative to the long axis of the tracheid (Donaldson
1987). The lower the MFA, the higher the stiffness and
the more stable the timber (Yang and Evans 2003, Fang
et al. 2006). Together, wood density and MFA determine
MOE (Walker and Butterfield 1995, Evans and Ilic 2001,
Yang and Evans 2003), a measure of stiffness and an
overall indicator of strength. The characteristic bending
stiffness of machine-graded pine (MGP) in New Zealand
with grades of MGP 6, MGP 8 and MGP 10 is 6.0, 8.0
and 10.0 GPa, respectively, while No. 1 framing and
engineering grades (both visually assessed) have mini-
mum requirements of 8.0 and 10.5 GPa, respectively
(Gaunt 1998, Standards New Zealand 1993).
The three radial wood properties (density, MFA and

MOE), along with ring width, can all be assessed using
Silviscan technology (Innventia Ab, Stockholm, Sweden).
Following the invention of Silviscan by Evans et al.
(1995), numerous studies have used this technology for
investigating within-tree wood properties of a range of
species including Eucalyptus globulus Labill., E. nitens
H.Deane & Maiden and E. regnans F.Muell. (Yang and
Evans 2003), Picea abies (L.) Karst. (Lundgren 2004,
Piispanen et al. 2014), Pinus taeda L. (Jordan et al.
2005), Pseudotsuga menziesii (Mirb.) Franco (Vikram et
al. 2011), Pinus sylvestris L. (Auty et al. 2013) and Pinus
radiata D.Don (Ivković et al. 2013). To our knowledge,
there have been no studies investigating within-tree ra-
dial variation of any cypress taxa.
In general, radial wood density varies with both age

and ring width (Franceschini et al. 2010, Jyske et al.,
2008). Ring width, in turn, is influenced by climate
(Bouriaud et al., 2004; Wimmer and Downes 2003),
aspect (van der Maaten 2012), silvicultural practices
(Filipescu et al. 2014) and cambial age. While many dif-
ferent forms of models have been presented for the rela-
tionship between ring width and age (or equivalently
time), the commonly used Hugershoff (1936) (cit Peschel
1938) curves (Eq. 1) have often been reported as being
the most robust (Fang et al. 2010, Bošeľa et al. 2011).

y tð Þ ¼ a� tb � e−ct þ d ð1Þ

where y(t) is the response variable at time, t, and a, b, c
and d are parameters to be estimated.
Microfibril angle also varies with age, being higher

nearer the pith and declining with increasing cambial
age (McMillin 1973, Zhang et al. 2007). The relationship
between MFA and cambial age has been examined in
many other studies, with a comprehensive list provided
by Donaldson (2008) in a review of MFA measurement,
variation and relationships. Relationships with MOE, like
those for density, show a general increase with cambial
age (e.g. Lasserre et al. 2009, Cortini et al. 2014).

Little research effort has focussed on wood property
variation within and among cypress genera. Further-
more, some contradictory results have been found
among the few published studies. For example, Watt et
al. (2008) studied 4-year-old Cupressus lusitanica and
found diameter (measured at ground level) to be highly
correlated with wood density, but Malimbwi et al. (1992)
found density and diameter to be unrelated in a study of
19-year-old C. lusitanica trees. McKinley et al. (2000)
studied a sample of four cypress taxa (C. lusitanica
Miller, C. macrocarpa Gordon, Chamaecyparis lawsoniana
(Murray) Parl. and Chamaecyparis nootkatensis (D.Don)
Spach x Cupressus macrocarpa) ranging in age from 13 to
52 years and found wood density was unrelated to tree
age. However, wood stiffness of a sample of boards sawn
from 21-year-old Cupressus lusitanica trees was shown to
be strongly influenced by cambial age (Low et al. 2005).
The boards (all sawn from butt logs and mechanically
tested) were classified as follows: Inner (when sawn from
the innermost rings), Outer (when sawn from the outer-
most rings) and Intermediate (when sawn from intermedi-
ary positions). Mean stiffness of the Inner, Intermediate
and Outer samples was 4.3, 5.4 and 7.2 GPa, respectively.
Given that Low et al. (2005) also found that mean
stiffness of C. lusitanica boards was less than that of
either C. macrocarpa or the Chamaecyparis nootkaten-
sis x Cupressus macrocarpa boards of the same age, a
lowered harvesting age of less than 35 years appears
plausible.
The objective of this study was to determine whether or

not the wood of younger cypress trees is sufficient to meet
the requirements of structural products. Firstly, relation-
ships among wood density, MFA and MOE on core sam-
ples obtained from trees of three cypress taxa were
investigated. The taxa studied were Cupressus lusitanica,
C. macrocarpa and Chamaecyparis nootkatensis x C.
macrocarpa. These are referred to as Lusitanica, Macro-
carpa and Leyland, respectively, from here on. Subse-
quently, mixed-effects models were developed to evaluate
cambial age, ring width, distance from pith, edge effect
and aspect as suitable candidate explanatory variables.
The models were then used to predict wood properties
over an extended time horizon, extrapolated beyond the
data range and applied to forecast the age at which pro-
duction of timber of specific dimensions and stiffness rat-
ings would be possible.

Methods
Sample Trees
This study was conducted on a stand of cypress trees
growing on pumice soil in the central North Island of
New Zealand (location, 38.1° S, 176.3° E, elevation
757 m) where the annual rainfall is about 1350 mm
(Chappell 2013). The stand of Leyland, Lusitanica and
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Macrocarpa was planted for demonstration purposes on
the grounds of the New Zealand Forest Research Insti-
tute in 1981 (Low et al. 2005, Fig. 1). There were four
Leyland hybrid clones that had been brought out as
plants from England by G. W. Sturrock of the Depart-
ment of Scientific and Industrial Research in the 1950s.
The clones were Green Spire, Haggerston Grey, Old
Alice and Clone 3. The study trees were raised from
cuttings taken from these clones. Lusitanica was grown
from seed collected from trees growing in Waipoua for-
est (location, 35.7° S, 173.6° E; seedlot AK77/23). Macro-
carpa was grown from seed collected from a shelterbelt
at Bulls nursery (location, 40.1667° S, 175.3833° E; seedlot
WN77/7). Vincent and Dunstan (1989) explained seedlot
numbers and systems.
A further block of ‘fastigiate clone 850.020 Pinus

radiata Selfs’ was also planted within the stand but not
used in this study. The trial was set up as a series of
row-plots, where all the trees in one row were the same
taxon. Rows were numbered 1 on the western side of
the block and went through to 27 on the eastern side.
Each row contained six trees planted along an approxi-
mate North to South axis. Trees within rows were num-
bered from 1 (southern aspect) to 6 (northern aspect).
Intermediary trees (numbered 2 to 5) were categorised
as having an ‘interior’ aspect. Being in the Southern
Hemisphere, the north side is the warmest side. The cy-
press trees on the north side received more light follow-
ing the harvest of an existing stand to the north of the
cypress stand in 1998 when the study trees were about
17 years old. Those northernmost trees were also shel-
tered from the cold southerly (i.e. Antarctic) winds.
The stand was planted at 1111 stems per hectare and

thinned to 550 stems per hectare at an age of about
10 years. Trees were also pruned to between 5 and 8 m

depending on tree height, but details of the timing of
these pruning lifts is not known. Breast-height (1.4 m)
diameters were recorded, and breast-height increment
cores were taken from 20 randomly selected trees per
taxon in 2002, when the stand was 21 years old. Heights
were also measured on some, but not all, trees. After
elimination of cores for which ring boundaries could not
be estimated, there were a total of 55 samples (20 Leyland,
19 Lusitanica and 16 Macrocarpa) available for use in this
study. The location of each tree used in this study, within
the row-plot design, is shown in Fig. 2.

Analysis of cores using Silviscan® equipment
The 12 mm cores, taken from the trees, shortly before
they were felled in 2002, were sterilised by soaking in a
96 % solution of ethanol then air-dried to a moisture
content of 13 %. Due to unforeseen circumstances, there
was a delay of 3 years, during which the cores were
stored in plastic bags in a freezer, before shipping to
Australia for analysis by Silviscan in 2005.
Cores were analysed using Silviscan® III (Evans 2006),

an automated suite of instruments that provide quantita-
tive measures of wood density by X-ray densitometry
and of microfibril angle by X-ray diffraction. MOE was
determined by combining the density and diffraction in-
formation as shown in Eq. 2:

MOE ¼ A Iρð ÞB ð2Þ

where ρ is density acquired by X-ray diffraction, I is the
coefficient of variation of the diffraction profile (and in-
cludes scattering from the S2 layer and background scat-
tering from S1 and S3 layers and other cell constituents)
and A and B are species-independent calibration constants

Fig. 1 Sample of 21-year-old cypress trees in the demonstration stand
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that relate to the sonic resonance method used for calibra-
tion (Evans 2006).
Density was measured at intervals of 50 μm, while MFA

and MOE were estimated at intervals of 5 mm for each
core. The positions of the annual ring boundaries for each
core were determined from the radial density profile using
software written in Interactive Data Language (IDL,
proprietary software distributed by Research Systems,
Inc. of Boulder, CO, USA now a division of Kodak)
(http://www.ittvis.com/ProductServices/IDL.aspx) spe-
cifically for the purpose. The boundaries were manually
amended where algorithms either failed to identify a
boundary or found spurious boundaries. Ring averages
were automatically calculated for density, MFA and MOE
and the width of each ring recorded when the operator
was satisfied with boundary locations. Ring width provided
a point estimate of annual diameter growth information.

Less than 50 % of the sample cores had 20 rings, 73 %
had 19 or more rings, 84 % had 18 or more rings and
96 % had 17 or more rings. Therefore, at 20 rings, the sam-
ple size was small and allowed for the possibility of biased
samples. To examine radial patterns across as many rings
as possible (while also avoiding small sample sizes) radial
properties were examined here on the three cypress taxa
from rings 1 to 18 inclusive. Radial properties examined
were as follows: ring width, wood density, MFA and MOE.

Statistical analysis
Relationships between radial wood properties (ring
width, density, MFA or MOE) and explanatory variables
were developed using the linear and nonlinear mixed-ef-
fects models package, ‘nlme’, (Pinheiro et al., 2013)
within the R environment (R Core Team, 2013) with a
significance level of 0.05 throughout.

Fig. 2 Layout of the 21-year-old cypress stand. Trees along the northern aspect (tree no. 6 in each row) received more sun and were sheltered
from the cold southerly winds to which trees growing along the southern aspect (tree no. 1 in each row) were exposed
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Linear models were formulated using the Laird and
Ware (1982) model (Eq. 3) and developed following the
protocol of Zuur et al. (2009), while nonlinear models
followed the Pinheiro (2002) model (Eq. 4).

y ¼ Xβþ Zuþ ε ð3Þ
y ¼ f ðXβþ ZuÞ þ ε ð4Þ

where y is the response vector, X and Z are matrices of
explanatory variables corresponding to fixed and random
effects respectively, β and u are the corresponding vec-
tors of parameters for the respective fixed and random
effects, ε is a vector of random errors and f is a nonlin-
ear function.
Candidate explanatory variables included (where ap-

propriate) cambial age (i.e. ring number from pith), ring
width, distance from pith, taxon, edge-tree and aspect.
Interaction terms with taxon, and transformations of
explanatory variables (the latter determined through
inspection of graphical plots) were also modelled to
address the assumption of normality. To address the as-
sumption of homogeneity of variance, heterogeneity was
incorporated into the variance structure of each model,
using a power function for the ring covariate, and exam-
ined through visual plots of residuals versus fitted values.
A residual autocorrelation structure, AR(1), was in-
cluded in the models to address the correlated nature of
the consecutive ring measurements. The variance and
autocorrelation structures are described in detail by
Auty et al. (2013). Random effects were modelled to
allow differences due to individual tree. Selection of the
most appropriate model structure was based on likeli-
hood ratio tests and the Akaike information criterion
(AIC, Akaike 1974).
Model performance was evaluated using mean abso-

lute percentage error (MAPE, a relative measure which
expresses errors as a percentage of the actual data), root
mean square error (RMSE, which, although highly influ-
enced by extreme values, is a useful measure because it
assumes the same units as the response variable) and
the coefficient of determination between actual and pre-
dicted data, R2. Predictions were made at the population
level, and excluded the estimated random effects, be-
cause in practice they would be unknown.
Final models for estimating density, MFA and MOE

were presented with both confidence and prediction
bands. Confidence intervals contained within the confi-
dence bands indicate the likely location of the true
population mean, whereas prediction intervals account
for both the uncertainty in the population mean as well
as data scatter. For this reason, prediction intervals are
always wider than confidence intervals.
At the individual ring level, mean radial wood proper-

ties were compared using analysis of variance (ANOVA).

A one-way ANOVA was conducted to determine if dif-
ferences between taxa wood properties were significant.
For post-hoc testing, the Tukey honestly significant differ-
ence (HSD) test was chosen for conducting the multiple
(54 = 3 (taxon) × 18 (rings)) pairwise comparisons. One-
way ANOVA followed by the HSD test was also conducted
on the stand measurements, again using a significance level
of 0.05, to determine if there were differences between
mean diameter, height and taper of the three taxa.

Application of models
It is possible to estimate the earliest age at which cypress
stands might be expected to meet structural product
requirements by running the radial wood property ring-
width models, the latter with consideration to tree
geometry. For example, consider the production of timber,
W mm wide × T mm thick × L m long, and of Y GPa.
To determine the minimum age at which production

would be possible:

1. Use the appropriate MOE model (Leyland, Lusitanica
or Macrocarpa) to determine the earliest cambial age,
A, at which the majority of trees (i.e. lower 95 %
model prediction interval) would achieve Y GPa.

2. Use the ring width model to calculate the distance, X,
from the pith to A (i.e. cumulative sum of ring widths).

3. Determine the minimum radius, R, at a height of
L + 0.1 m (assuming a 0.1 m stump), R = ((X + T)2 +
(W/2)2)½.

4. Estimate the minimum radius at breast height (1.4 m)
by accounting for taper, R = R + taper x (L-1.3),
where 1.3 is breast height less stump height, and
taper is the upper 95 % confidence interval of taper
(refer Table 1).

5. Finally, reapply the (cumulative) ring width model to
estimate the expected minimum age at which R is
attained.

Results
Mean stand characteristics of the three taxa
On average, at age 21 years, trees of the Leyland taxon
were the smallest in terms of girth (with a breast-height
diameter of 334 mm), Macrocarpa the tallest (21.6 m)
and least tapered (17.6 mm.m−1), and Lusitanica the
most tapered (20.1 mm.m−1). The Leyland and Lusita-
nica taxa were, on average, of similar height. Mean stand
characteristics of the three taxa and sample sizes by as-
pect are summarised in Table 1.

Measured ring width
Mean ring width initially increased for the majority of the
cypress trees, reaching a peak at a cambial age of 2 to
3 years. After peaking, ring width tended to decrease with
cambial age. However, there were some fluctuations and
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spikes, which were particularly pronounced for Lusitanica
and Macrocarpa. Aspect appeared to have a small influence
on ring width, particularly for Leyland (Fig. 3, top row) and
a small thinning response was observed when the trees
were aged 12 to 14 years (Fig. 3, bottom row). Subsequent
to this period of thinning response, ring width again de-
creased with cambial age but at a slower rate than prior to
the thinning response.
In years 2–8 of growth, mean ring width of Lusitanica

was significantly greater than that of Leyland. Differ-
ences in mean ring width between Macrocarpa and
Leyland were not significant, while differences in mean
ring width between Lusitanica and Macrocarpa were sig-
nificant only for rings 3 (p = 0.03) and 5 (p = 0.04). After
a cambial age of 8 years, mean ring width was not sig-
nificantly different between taxa.

Measured wood density
Radial trends in mean ring density were unique to each
taxon with considerable variation due to individual trees
(Fig. 4). The northernmost trees tended to demonstrate

higher density than the southernmost trees, particularly
those of the Leyland taxon (Fig. 4, top row). For Leyland,
wood density declined rapidly from a mean of 570 kg.m−3

at ring 1 to a mean of 470 kg.m−3 at ring 3. Thereafter,
mean ring density of the Leyland taxon was approximately
450 kg.m−3, though there was considerable variation
(extending to about ±100 kg.m−3) due to individual trees.
For Lusitanica, mean ring density followed an approxi-
mate parabolic form for the first 10 years, with an initial
density of 456 kg.m−3 and a minimum of 385 kg.m−3 at
6 years. After 10 years, mean density was relatively con-
stant (approximately 436 kg. m−3). For Macrocarpa, mean
ring density followed a relatively flat gradient, with a slight
trough in the first 3 years and a slight ridge at 11 years.
The Tukey HSD test indicated significant differences

among taxon means within the first 13 years of growth.
Mean ring density of Lusitanica was significantly less than
that of Leyland (until ring 10) and of Macrocarpa (until ring
13). Mean ring density is indicated by grey dots super-
imposed on the box plots in Fig. 4. Inspection of density-by-
ring plots for individual trees suggested that the data points

Table 1 Mean stand characteristics (with 95 % confidence intervals) of the three cypress taxa. Means with the same letter are not
significantly different

Taxon Sample sizea Breast-height diameter Total height Taper

(mm) (m) (mm.m−1)

Leyland 20 (4, 11, 5) (13) 334b (317,352) 18.3b (17.6,19.1) 17.8ab (16.3,19.3)

Lusitanica 19 (4,11,4) (19) 387a (357,417) 19.3b (18.6,20.0) 20.1a (18.5,19.2)

Macrocarpa 16 (4, 10, 2) (14) 386a (350,422) 21.6a (19.9,23.3) 17.6b (15.9,19.2)
aNumber of trees, by aspect (north, intermediary, south) and subsample of trees for which height was measured

Fig. 3 Radial variation in ring width for three cypress taxa. Outliers, denoted by black circles in the bottom row figures, extend beyond 1.5 times
the interquartile range. Means, denoted by grey dots are connected to illustrate general trends
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were valid although outliers (which influence mean values)
were present (as indicated by the black circles in the figure).

Measured microfibril angle
Mean MFA followed a declining trend with a rela-
tively steep gradient in the early years of growth (up
to about age 10 years), before levelling off (Fig. 5).
Overall, mean MFA was lowest for Leyland (with an
average of 13.9° for the period from 12 to 18 years
of age) and highest for Macrocarpa (average 18.4°

for the same period). Mean MFA of Lusitanica for
the same period was 16.5°. Variation about the
means was within ±10° for all trees. Microfibril angle
did not appear to be influenced by either aspect or
silviculture.
In comparison with Lusitanica, mean MFA of Leyland

was significantly lower for all cambial ages up to and in-
cluding ring 12. In comparison to Macrocarpa, mean
MFA of Leyland was not significantly different in the
first 4 years of growth, but was significantly lower from

Fig. 4 Radial variation in wood density for three cypress taxa. All denotions are as for Fig. 3

Fig. 5 Radial variation in microfibril angle for three cypress taxa. All denotions are as for Fig. 3
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age 5 through to 18 years. Mean MFA of Lusitanica was
the highest of the three taxa during the early years of
growth, being significantly higher than that of Macro-
carpa until a cambial age of 7 years (and significantly
greater than Leyland until age 12 years).

Measured modulus of elasticity (via Eq. 2)
Mean MOE generally increased with increasing cambial
age, though the reverse trend was noted during the ini-
tial 2 to 3 years of growth (Fig. 6). The rate of increase
in mean MOE was greater in the earlier half of

measurements than in the latter half. Mean MOE for the
period from age 11 through to 18 years inclusive was
12.9, 10.9 and 10.4 GPa for Leyland, Lusitanica and
Macrocarpa, respectively. At age 18 years, MOE aver-
aged 11–13 GPa; however, trees with a southern aspect
were about 1–2 GPa lower. The effect of aspect on
MOE appeared to be greater for Leyland than the other
two taxa (Fig. 6, top row). Effects due to thinning were
minimal (Fig. 6, bottom row).
Mean MOE of Leyland was significantly greater than

that of Lusitanica until a cambial age of 16 years and,

Fig. 6 Radial variation in modulus of elasticity for three cypress taxa. All denotions are as for Fig. 3

Fig. 7 Models considered for predicting ring width for three cypress taxa
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with the exception of ring 11, was significantly greater
than that of Macrocarpa throughout the 18-year meas-
urement period. Differences in mean MOE between
Lusitanica and Macrocarpa were significant only for the
first 8 years of growth during which mean MOE of
Lusitanica was significantly less than that of Macrocarpa.

Modelled ring width
Three ring-width models (an inverse transformation of
cambial age, Hugershoff curves and a fifth degree poly-
nomial), all augmented by aspect, resulted in similar fit
statistics but demonstrated large differences in predictive
capability (Fig. 7). The inverse-age model (fitted to rings
3–18 inclusive) demonstrated a gradual decline in ring
width with increasing age for predictions beyond ring
18, as would be expected. The nonlinear Hugershoff
curves, while providing a better fit in the early years,
plateaued early, at about 13 years. The polynomial model
provided a reasonable fit to the data until about age
15 years but was impractical for later predictions. There-
fore, the final model was a linear mixed-effects model
based on the inverse transformation of cambial age,
taxon and aspect. Only the southerly aspect was
significantly different to the interior aspect. Model pa-
rameters are provided in Table 2. Parameter estimates of
the autocorrelation and variance structures were 0.591
and −0.142, respectively. Model performance, as judged
by the three goodness-of-fit statistics, was reasonably
good in view of the data variability demonstrated in
Fig. 3. At the population level, MAPE was 32.4 %, RMSE
3.20 mm and R2 was 0.44.

Modelled wood density
Radial wood density of the three cypress taxa was
modelled by extending the model of Franceschini et al.
(2010), with additional variables: taxon, aspect, edge-tree
and interaction terms. The model of Franceschini et al.
(2010) included cambial age, a square-root transform-
ation of cambial age, a transformation of ring width, and
the quotient of cambial age and ring width.
Model parameters of the optimal wood density model,

which included all explanatory variables proposed by
Franceschini et al. (2010) and additional interactions

with taxon, are given in Table 3. Parameter estimates of
the autocorrelation and variance structures were 0.561
and −0.191, respectively. Edge-tree was not significant as
an explanatory variable; however, aspect was highly
significant. Trees on the northernmost aspect would be
expected to be 44 kg.m−3 denser than those on the
southernmost aspect.
Model performance statistics suggested a relatively

strong relationship between actual and estimated mean
ring density (Table 4). At the population level for the
combined sample, MAPE was 6 %, RMSE was 36 kg.m−3

and R2 equalled 0.56. Overall, the population level model
explained about 56 % of the variation in mean density.
Modelled regression lines of mean density, using esti-

mated ring widths from the model parameters presented
in Table 2, are shown in Fig. 8 together with 95 % confi-
dence and prediction bands. The confidence intervals
(shown in the figure by the shaded grey areas) indicate
the likely location of the true population mean and have
a precision (width of the interval) of about ±16 kg.m−3

while precision of the prediction intervals (which include
scatter from individual trees) is about ±46 kg.m−3.

Table 2 Parameters estimates and fit statistics from fitting the
linear mixed-effects model to predict mean ring width

Parameter Value Std. Error DF t value p value

(Intercept) 3.57 0.49 802 7.35 0.000

A−1 32.2 2.0 802 16.0 0.000

Lusitanica 1.62 0.56 51 2.86 0.006

Macrocarpa 1.21 0.59 51 2.04 0.046

South 2.28 0.60 501 3.83 0.000

A cambial age

Table 3 Parameter estimates and fit statistics from fitting the
linear mixed-effects model to predict radial density

Parameter Value Std. Error DF t value p value

(Intercept) 503 25 904 20.4 0.000

Lusitanica −166 31 51 −5.36 0.000

Macrocarpa −187 33 51 −5.74 0.000

A 12.2 2.7 904 4.46 0.000

A0.5 −95.9 15.5 904 −6.17 0.000

A/W −2.96 1.43 904 −2.07 0.039

1/(1 +W0.5) 480 36.9 904 13.0 0.000

North 24.3 8.9 51 2.75 0.008

South −20.2 9.2 51 −2.18 0.034

A: Lusitanica −7.06 3.90 904 −1.81 0.070*

A: Macrocarpa −18.1 4.1 904 −4.44 0.000

A0.5: Lusitanica 66.3 22.2 904 2.98 0.003

A0.5: Macrocarpa 125 23 904 5.36 0.000

A cambial age, W ring width
*not significant

Table 4 Performance statistics of the radial density model, by
taxon

Taxon MAPE (%) RMSE (kg.m−3) R2

Leyland 5.1 30 0.56

Lusitanica 7.0 38 0.46

Macrocarpa 6.5 41 0.42

All 6.1 36 0.56

MAPE mean absolute percentage error, RMSE root mean square error, R2

coefficient of determination
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Modelled microfibril angle
A linear mixed-effects polynomial model based on
cambial age provided good fit statistics, but due to its
symmetric nature, was not reliable for forecasting MFA
beyond the sample interval (1–18 years). Improved fore-
casting was however obtained with an alternative model,
based on an exponential equation and similar in form to
the MFA model of Cortini et al. (2014). The response
variable (MFA) was log-transformed as were two ex-
planatory variables (cambial age and distance from pith),
which were transformed following visualisation of the
data plots. Taxon was highly significant as an ex-
planatory variable. However, unlike the density model,
interaction terms with taxon were not significant, but
interaction between ring width and the logarithmic
transform of age was highly significant. Aspect and
edge-tree were not significant. Parameter estimates of
the final linear model are given in Table 5. Parameter

estimates for the autocorrelation and variance struc-
tures were 0.905 and 0.104, respectively.
Performance statistics comparing actual with predicted

MFA demonstrated a strong relationship between actual
and estimated mean microfibril angle (Table 6). At the
population level for all taxa, MAPE was about 16 %,
RMSE 3.7°, and R2 equalled 0.69.
The modelled regression lines of mean microfibril angle

are shown in Fig. 9 together with 95 % confidence and
prediction bands. Due to the logarithmic transform of the
response variable, a bias correction factor (Snowdon 1991)
was calculated for each taxon (0.98, 0.99 and 1.03 for
Leyland, Lusitanica and Macrocarpa, respectively) and ap-
plied when calculating predicted MFA. The confidence in-
tervals shown in the figure have a precision of about ±2.0°
while precision of the prediction intervals is about ±3.8°.

Modelled modulus of elasticity
Linear and nonlinear mixed effects models were consid-
ered when developing the MOE models. Nonlinear
models for each taxon were based on the Mitscherlich
equation (Briggs 1925), augmented by aspect. Final

Fig. 8 Prediction of radial density for three cypress taxa. The regression line is shown as a solid line, the 95 % confidence bands for the regression
line are shown as dashed lines with the confidence interval shaded grey and the 95 % prediction bands are shown as dotted lines

Table 5 Parameter estimates and fit statistics from fitting the
linear mixed-effects model to predict radial logarithmic microfibril
angle, ln(MFA)

Parameter Value Std. Error DF t value p value

(Intercept) 3.50 0.14 799 24.9 0.000

Lusitanica 0.216 0.046 52 4.66 0.000

Macrocarpa 0.146 0.047 52 3.12 0.003

ln(A) −0.597 0.057 799 −10.4 0.000

W −0.010 0.004 799 −2.71 0.007

ln(X) 0.136 0.053 799 2.55 0.011

ln(A):W 0.00764 0.00169 799 4.52 0.000

A cambial age, W ring width, X distance from pith

Table 6 Performance statistics of the radial microfibril angle
model, by taxon

Taxon MAPE (%) RMSE (°) R2

Leyland 15.3 3.7 0.64

Lusitanica 16.0 3.7 0.77

Macrocarpa 14.4 3.7 0.63

All 15.6 3.7 0.69

MAPE mean absolute percentage error, RMSE root mean square error, R2

coefficient of determination
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models, with better fit statistics, were of linear form.
Explanatory variables comprised taxon, ring width, the
logarithmic transform of cambial age and aspect. The
southern aspect was significantly different to the inter-
mediary aspect, but the northern aspect was not. An
interaction term with ring width was also highly signifi-
cant for the southern aspect only. Therefore, a new vari-
able that only distinguished the southern aspect was
introduced in the model (Table 7). Parameter estimates
for the autocorrelation and variance structures were
0.834 and 0.133, respectively. Performance statistics,
which suggest a good fit between actual and estimated
MOE, are provided in Table 8.
The modelled regression lines of mean modulus of

elasticity are shown in Fig. 10 together with 95 % confi-
dence and prediction bands. The confidence intervals

have a precision of about ±0.7 GPa, while precision of
the prediction intervals is about ±1.4 GPa.

Forecasts of earliest age for production of timber of
specific MOE
The steps outlined under ‘Application of Models’ were
followed to estimate the earliest possible ages for produ-
cing 100 × 50 × 2.0 and 150 × 50 × 2.0 timber (width
(mm), thickness (mm), length (m)) timber of 6 and
8 GPa. One minor modification to the procedure was re-
quired due to the ring-width models being valid for
cambial age greater than 2 years. The modification
entailed adding the sum of the actual mean ring widths
of the first two rings (totalling 18 mm for Leyland and
24 mm for Lusitanica and Macrocarpa) to the cumula-
tive sum obtained from the ring-width models.
With this procedure, the minimum age for producing

100 mm × 50 mm × 2.0 m 6 GPa timber from Leyland
stands was estimated to be 22 years whereas that for
Lusitanica was 32 years and for Macrocarpa 29 years. At

Table 8 Performance statistics of the radial modulus of elasticity
model, by taxon

Taxon MAPE (%) RMSE (GPa) R2

Leyland 13.3 1.66 0.65

Lusitanica 19.8 1.85 0.74

Macrocarpa 17.2 1.71 0.59

All 16.6 1.74 0.66

MAPE mean absolute percentage error, RMSE root mean square error, R2

coefficient of determination

Fig. 9 Prediction of microfibril angle for three cypress taxa. The regression line is shown as a solid line, the 95 % confidence bands for the
regression line are shown as dashed lines with the confidence interval shaded grey and the 95 % prediction bands are shown as dotted lines

Table 7 Parameter estimates and fit statistics from fitting the
linear mixed-effects model to predict radial modulus of elasticity
(MOE)

Parameter Value Std. Error DF t value p value

(Intercept) 6.34 0.49 800 13.0 0.000

Lusitanica −2.54 0.37 51 −6.87 0.000

Macrocarpa −1.94 0.39 51 −4.98 0.000

Southern −2.16 0.51 51 −4.24 0.000

ln(A) 2.91 0.17 800 16.8 0.000

W −0.170 0.014 800 −11.8 0.000

W: Southern 0.102 0.027 800 3.83 0.000

A cambial age, W ring width
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25 years, wider timber (150 mm) can be produced from
Leyland, and by 30 years, production of 8 GPa timber is
forecast to be possible. Age forecasts for 6 and 8 GPa
products are summarised in Table 9. Overall, forecasted
ages for production of strength-grade timber were great-
est for Lusitanica and least for Leyland.

Discussion
All results presented here were based on trees growing
in row-plots. Though the row-plot design results in a
greater proportion of edge trees than other plot designs,
the edge-tree effect was not significant in any of the
wood property models. Aspect, on the other hand, was
highly significant in models predicting wood density.
Trees on the northernmost aspect (warmest aspect with
more sunshine in the Southern hemisphere) had greater
wood density, amounting to about 44 kg.m−3 more than
those on the southernmost aspect. As suggested by van
der Maaten (2012), these differences may relate to the
differing levels of irradiation between aspects. On this
basis, it would be expected that a similar plot design in
the Northern hemisphere would result in trees with a
southern aspect having greater wood density.
Overall, wood density gradients of the three cypress

taxa were relatively flat, as suggested by Brailsford
(1999). At age 25 years, mean density of the three taxa,

using the models whose parameters are given in Table 3,
is estimated to be 461, 441 and 437 kg.m−3, for Leyland,
Lusitanica and Macrocarpa, respectively. However, with
large variation due to individual trees, the 95 % predic-
tion interval suggests that density at age 25 years could
be as low as 410, 389 and 385 kg.m−3 or as high as 511,
492 and 489 kg.m−3 for trees of the three taxa, respect-
ively. As all values are lower than the 540 kg.m−3 thresh-
old indicating low-density wood, it can be expected that
the timber of these cypress taxa will dent easily when
depressed.
Radial patterns of microfibril angle of the three cypress

taxa were similar to those of other conifers, with the
highest angles occurring in the first five growth rings
(McMillin 1973, Zhang et al. 2007), and like MFA of
Pinus radiata (Moore et al. 2014), the cypress taxa had
comparable and low MFA values (Donaldson 1992).
Mean MFA of the first five growth rings was 25°, 45°
and 29° for Leyland, Lusitanica and Macrocarpa, respect-
ively, while at age 25 years, mean MFA was estimated to
be 11°, 14° and 13° for the three taxa, respectively.
Mean modulus of elasticity of Leyland was greater

than that of either Lusitanica or Macrocarpa for the ma-
jority of the tree rings analysed here (up to and includ-
ing a cambial age of 18 years). At age 18 years, mean
MOE of Leyland was 13 GPa, about 2 GPa greater than

Fig. 10 Prediction of modulus of elasticity for three cypress taxa. The regression line is shown as a solid line, the 95 % confidence bands for the
regression line are shown as dashed lines with the confidence interval shaded grey and the 95 % prediction bands are shown as dotted lines

Table 9 Forecasts of the earliest age (years) at which product specifications can be met

Taxon Product (strength-grade × width)a

6 GPa × 100 mm 6 GPa × 150 mm 8 GPa × 100 mm 8 GPa × 150 mm

Leyland 22 25 30 32

Lusitanica 32 33 >35 >35

Macrocarpa 29 31 >35 >35
aProducts in this example forecast are 50 mm thick and 2.0 m long
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that of the other two taxa. At age 25 years, predicted
mean MOE of the three taxa was 14, 11 and 12 GPa,
respectively, while MOE of the lower (95 %) prediction
bands was 13, 9 and 10 GPa, respectively. Thus, at age
25 years, it would be expected that products derived
from stands of Lusitanica and Macrocarpa would fail to
meet the engineering grade criteria of 10.5 GPa and
would attain 6 and 8 GPa strength grades only if suffi-
cient growth had occurred.
Forecasts of the age at which specific product density

or MFA is attained can be made following the steps out-
lined in ‘Application of Models’. However, while fore-
casts using the above wood property models address
wood quality and form, other degrading features such as
knots, warp on drying and internal checking need con-
sideration. For Lusitanica and Macrocarpa, Low et al.
(2005) reported problems with warp on drying for the
former taxon and problems with internal checking for
the latter. However, the Leyland hybrid was reported as
having good performance in terms of both appearance
and structural products. In general, wood properties can
vary for trees growing under different conditions; there-
fore, if growth rates differ to those presented here, fore-
casts will need to be revised to match the growing
conditions.

Conclusions
Shorter rotations appear to be feasible for Leyland, with
the production of 6 GPa timber being possible from the
outer log zones from age 22 years. However, benefits of
shortened rotations for either Lusitanica or Macrocarpa
are questionable. With other studies demonstrating good
performance of Leyland timber for both appearances
and structural products, this hybrid cypress taxon is a
suitable candidate for increased production forestry from
exotic species in New Zealand.
Characterisation of radial variation in wood properties

is an important step in forecasting not only harvesting
ages but also potential product quality. Various product
scenarios, of both existing and new products, can be
evaluated using methods and models developed here.
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