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Simple random sampling of individual
items in the absence of a sampling frame
that lists the individuals
P. W. West

Abstract

Background: A ‘sampling frame’ identifies the sampling units in a population and their locations. It may consist of
a listing of sampling units, or it may be based on a map of the population area within which sampling units can be
observed. For inventory of large forests or other populations, it is common for no list of individual plants to exist,
but it is common to have available a map of the area. When such a map is the only available sampling frame,
methods are well established for drawing a simple random sample of fixed area plots. Less well-known methods
are available if the sample is to consist of individual population members rather than groups of them in plots.
Through simulation studies, the efficacies of two methods devised by Dr. K. Iles are considered for drawing a simple
random sample of individuals given a map of the population area.

Findings: It is shown that simple random samples of individuals can be drawn satisfactorily using such a map.
Further, the estimates obtained from the population mean of individuals, and its precision, are the same as those
obtained when a sampling frame consisting of a list of individuals is available. Estimates of the population total can
be obtained also, but their precision will be lower than those obtained when a list is available.

Conclusions: The absence of a list of individuals in a population does not preclude simple random sampling of
individuals as long as a map of the population area is available. However, a preliminary survey of the population
must then be made before sampling starts, and it may be necessary to visit many more sampling units to obtain
the required sample than is the case when a list is available. The more complex the spatial arrangement of
individuals within the population, the greater will be the number of sampling units that must be visited.
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Findings
Background
Depending on the nature of a population and the infor-
mation desired through sampling from it, there are
many ways in which the sample may be drawn; these are
discussed in texts on sampling techniques (e.g. Schreuder
et al. 1993; Cochran 1999; Gregoire and Valentine 2008).
Perhaps the most basic method of sampling is ‘simple
random sampling’, where each and every member of a
population has the same chance of being included in
the sample and where all possible samples of a given
size have the same chance of selection. This work is

concerned with difficulties that may be encountered
in large populations, such as occur over large forest
areas, when it is desired to take a simple random
sample consisting of individual items, such as individual
trees, from the population.
As discussed by Gregoire and Valentine (2008, p. 8),

before a sample can be drawn from a population, it is
necessary to have available a ‘sampling frame’, that is, a
mechanism that identifies and locates the sampling units
within the population. It may be a ‘list sampling frame’
whereby a list of each and every sampling unit has been
compiled, or it may be an ‘area sampling frame’ that
consists only of a map of the area containing the sam-
pling units. If an area sampling frame only is available,
the number of sampling units within the population is
unknown and it is impossible to know where to start or
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finish selection of those that are to be included in a sam-
ple. In many areas of human endeavour, it is common to
have to deal with large populations for which no list sam-
pling frame has been compiled. The items making up such
populations could be as varied as households within a city,
trees in a forest, pebbles on a beach, objects in a photo-
graph, cells on a microscope slide or any other situation
where a large number of items appear on a surface or
within a volume.
Forest (or other natural resource) populations may

cover very large areas, too large for a list of individual
trees or other plants within it to be compiled. However,
if a map of the forest area exists, it can be used as an
area sampling frame (Gregoire and Valentine 2008, p.
207) as long as plot-based sampling is to be used. There
is then little difficulty in taking a simple random sample.
Sample plots of a given area are positioned at randomly
selected locations across the mapped area (Schreuder et
al. 1993, pp. 113–117; Iles 2003, pp. 157–158). After a
plot has been selected in the sample, measurements are
made of the individuals in the plot to determine a stand
value (an amount per unit area) of the variable of interest
being measured in the inventory (the ‘target’ variable). To
avoid bias in determining these stand values, particular
‘edge overlap’ methods must be used when measuring
any plot of which a part falls beyond the forest edge
(Schreuder et al. 1993, pp. 297–301; Iles 2003, pp. 621–
658; Gregoire and Valentine 2008, pp. 343–355; West
2013, 2015, pp. 126–130).
The situation is rather different if no list sampling

frame of the individuals in a population exists, but a
sample is desired that consists of individuals rather than
plots. Such a sample would be needed where the target
variable is a characteristic of individuals rather than
stands. Forest examples might involve estimation of the
average height of the suppressed trees in the forest, the
average number of mistletoe infections on individual
trees, the average thickness of tree stem bark, the aver-
age number of habitat holes on old-growth trees in ma-
ture forest or the average clump size of an understorey
grass species. Examples in other than forest populations
might be the average size of pieces of gravel in a large
pile, the average number of people living in individual
dwellings in Siberia or the average femur length of skele-
tons in a mass grave in an archaeological dig.
Cluster sampling is one method that has been used in

these circumstances. It involves dividing the population
into recognisable ‘clusters’ (say, streets within a city
suburb) and then sampling from the clusters (say, the
houses in a street) (Cochran 1999, Chaps. 9–10; Schreuder
et al. 1993, Chap. 3; Gregoire and Valentine 2008,
Chap. 12). However, this is inappropriate if it is desired to
take a simple random sample of individuals from the
population; cluster sampling generally involves varying

chances of selection for the population members, rather
than equal chances as required for a simple random sam-
ple. Pinkham (1987) described a simple method to take a
simple random sample of individuals from a population
without a list sampling frame. However, it involves visiting
each and every individual in the population, generally an
impossibility for very large populations and a process
through which a list sampling frame could be compiled in
any case.
In his works on forest inventory practice, Iles (1979,

2003, pp. 165–167) suggested methods to select a simple
random sample of individuals from a population which
has an area sampling frame available but no list sampling
frame. These methods do not seem to have had any
substantial appreciation previously in the statistical or
forestry literature. This work describes two of Iles’
methods and considers their efficacy in inventory through
simulation studies.

Sampling methods
The two sampling methods considered here were termed
Method 1 and Method 2 in Iles (2003, pp. 165–166) and
the ‘plot reduction method’ and the ‘elimination tech-
nique’, respectively, in Iles (1979); for the present work,
the names Method 1 and Method 2 will be used. The
two methods are closely related. Both involve the ran-
dom location of sample plots of a fixed area, counting
the number of individuals in each plot, the selection of
no more than one individual from the plot to become a
member of the required simple random sample and then
measurement of the target variable on that selected indi-
vidual. Iles (1979) suggested other methods also, but
they involve rather more measurement of individuals
and will not be considered further here. The bias inher-
ent in one of those other methods has been quantified
recently (Lynch 2015).
Suppose the objective of the sampling process is to ob-

tain a simple random sample containing n individuals.
The sampling is done using sample plots, each of area a,
with their centres positioned at randomly chosen locations
across the forest area. For geometric ease, it is most prac-
tical to use square, rectangular or circular plots although
other plot shapes could be used. Plot centres are allowed
to be located within an area slightly larger than the forest
area, an area that is then considered to constitute the
entire forest population being sampled. This area may be
defined as a rectangle completely surrounding the forest
area (Iles 2003, Fig. 5.02, p. 166). For circular plots,
no side of the outer rectangle should be, anywhere, closer
to the forest edge than the plot radius and for square or
rectangular plots, no closer than half the length of the plot
diagonal. Suppose the total area defined by the forest and
its surrounding rectangle is then A. Locating plot centres
at random within such a rectangle allows sampling near
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the forest edge to be done without use of the edge overlap
methods mentioned earlier; any part of a sample plot that
falls beyond the forest edge is then simply part of the total
population being sampled as defined by the area A.
Sampling proceeds by choosing locations of plot

centres at random points within the forest area and its
surrounding rectangle. The plots become members of a
set V, the ith (i ϵ V) member of which contains pi (≥0)
individuals. If a plot contains one or more individuals,
selection methods described below are used to choose
no more than one individual from the plot. That individ-
ual then becomes a member of a set S which will become
the required simple random sample. The target variable
is then measured on that individual to have the value
yi (i ϵ S). The sampling process then continues until
S contains n individuals, the sample size required, by
which time V will contain v (≥n) plots.
Methods 1 and 2 differ in the way in which an individual

is selected from a plot to become a member of S. Method
1 requires using a plot area small enough so that no more
than one individual ever occurs in a plot. No selection
process is then required, and if a plot contains an individ-
ual, that individual immediately becomes a member of S.
This procedure may work well in circumstances where
individuals are reasonably well spaced. However, if
some individuals occur in close proximity to each other
or if the individuals are, say, small understorey plants
that occur in large numbers in clumps, the plot size
would need to be impractically small. In those cases, a
large number of selected plots would contain no indi-
viduals, so slowing the sampling process.
Method 2 allows larger plots to be used that may con-

tain none or one or more individuals. If a plot contains
no individuals, it becomes a member of V and sampling
moves on to the next plot. Before sampling starts, a
value M must have been chosen that is slightly in excess
of the maximum number of individuals that will be
found in any plot. When the ith (i ϵ V) sample plot
contains pi individuals (1 ≤ pi <M), they are numbered
1…pi in an arbitrary order and a uniform (1,M) random
number r is generated. If r > pi, no individual is selected
from that plot and sampling moves on to the next plot. If
r ≤ pi, the individual in the plot assigned that number
becomes the next member of S and is measured for
the target variable. Before sampling starts, it is important
that an appropriate value be determined for M by initial
reconnaissance of the population. If a plot is encountered
containing M or more individuals, the sampling process
will be frustrated. On the other hand, the number of plots
included in V will increase directly with the value chosen
for M, so minimisation of the value of M will minimise
the sampling effort.
Because both methods allow only one individual to be

selected from any one randomly located plot, every

individual in the population has an equal chance of be-
ing included in the sample. Also, the random plot loca-
tions allow any one plot to overlap any other plot. This
means that inclusion of any one tree selected in the sam-
ple does not preclude any other tree from being selected,
even though both may have been included together in
different plots. Thus, the final sample may consist of any
possible combination of individuals from the population
meaning that the requirements for a simple random
sample are satisfied.
As described here, this process involves sampling with

replacement. If, as is often the case, sampling without
replacement is required, then no individual is permitted
to enter the sample more than once. This may then re-
quire some additional plot selection to achieve the desired
sample size.
For both Methods 1 and 2, estimates of the population

mean of the target variable for the individuals, y, may
be determined with the usual simple random sample
estimator as

y ¼ Σi �S yi½ �=n ð1Þ
When sampling with replacement, an estimate of its

standard error, σ̂ yð Þ, may be determined as

σ̂ yð Þ ¼ Σi�S yi � yð Þ2� �� ��
n n� 1ð Þ��1

2= ð2Þ
and when sampling without replacement, as

σ̂ yð Þ ¼ 1� n=N½ � Σi�S yi � yð Þ2� �� ��
n n� 1ð Þ��1

2= ð3Þ
where N is the total number of individuals in the popula-
tion. In the absence of a list sampling frame, N is un-
known. When relatively small samples are taken from
relatively large populations, such as are common in the
absence of a list sampling frame, the term n/N approaches
zero and Eq. (3) reduces to Eq. (2). However, if sampling is
without replacement and the term n/N is likely to be of a
magnitude sufficient to affect σ̂ yð Þ appreciably, then σ̂ yð Þ
might need to be determined using bootstrapping.
An estimator of the population total of the target vari-

able, ŶT, is

Ŷ T ¼ N^y ð4Þ
where N^ is an estimate of the population size that is un-
known in the absence of a list sampling frame. N^may be
determined from the information collected for either
method as

N^¼ A=a½ � Σi�V pi½ �=v ð5Þ
The target variable value of individuals selected in the

sample (yi) is not necessarily uncorrelated with the num-
ber of individuals in the plot from which each was selected
(pi). Furthermore, the number of individuals selected (n)
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and the number of plots sampled (v) are not usually the
same. Under these circumstances, no analytical estimator
is available to determine the standard error of this esti-
mate of the population total, σ̂ Ŷ T

� �
, which would involve

the product of the variances of the two terms of Eq. (4)
(Goodman 1960). Instead, this standard error might be es-
timated using bootstrapping. To do this, the members of
the set V would be re-sampled with replacement until a
new set V′, consisting of v′ plots of which the ith (i ϵ V′)
originally contained p′i individuals and in which a subset
S′ of size n is made up from plots that contained a sample
individual. A new estimate of y would then be obtained,
using the data from S′ with Eq. (1), and also of N^, by re-
placing v with v′ and the pi with the p′i in Eq. (5). These
new estimates would be used with Eq. (4) to get a new es-
timate of ŶT. This process would be repeated many times
and the standard error of the many estimates of ŶT used
as the estimate of σ̂ Ŷ T

� �
.

Of course, other, plot-based, methods could be used to
estimate the population size, perhaps with greater preci-
sion. The method described above was mentioned here
only because it uses the data already collected in deter-
mining the population mean and requires no additional
sampling effort.

Simulations
Simulations using both Methods 1 and 2 were con-
ducted using two artificially constructed forest popula-
tions from which simple random samples of individual
trees were to be selected. The populations were con-
tained within square 49-ha forest areas, and the loca-
tions of the individuals within the two populations are
shown in Fig. 1. The first population (Fig. 1a) had a

rather complex arrangement of 720 individuals. Half of
the individuals were arranged in circular patches whilst
half were scattered randomly across the entire area. The
individuals in the circular patches had stem diameters at
breast height selected at random in the range 60–90 cm.
The randomly scattered individuals were all larger with
random diameters from the range 90–120 cm. Over the
whole forest area, the average tree stem basal area was
0.662 m2 and the total basal area was 476 m2. This ar-
rangement was such that no individual was closer to any
other than 7.8 m. Such a complex arrangement of indi-
viduals leads to considerable small-scale variation in tree
stocking density; it was felt that problems encountered
in selecting samples should become evident with such
complexity. In the second population, (Fig. 1b), 676 indi-
viduals were positioned in a 26.05-m square arrange-
ment with stem diameters in the range 60–120 cm. In
that case, the average tree stem basal area was 0.646 m2

and their total basal area was 473 m2.
Simulations were done for both example populations,

by sampling with replacement and using both Methods
1 and 2, to estimate the population tree average basal
area and the total basal area of all trees, together with
their standard errors. In obtaining bootstrap estimates of
the standard errors of each simulation estimate of the
population total basal area, 100 bootstrap samples were
used; more bootstrap samples might have been used,
but some studies of sampling in forest circumstances
have suggested that 100 is sufficient (Schreuder et al.
1992; West 2016).
Of course, in these example populations, the number

and locations of all individuals in the populations were
actually known, so that a list sampling frame did in fact
exist for them, although it was being assumed there was

Fig. 1 Locations of individual trees in artificially constructed forest populations contained in 700-m square areas. In a, there were 720 individuals,
with 360 trees of smaller stem diameters (open circle) arranged in circular groups whilst 360 larger diameter trees (filled circle) were scattered
randomly. In b, 676 individuals were arranged on a 26.05-m square grid
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only an area sampling frame available when applying
Methods 1 and 2. Thus, simulations were done also
using simple random sampling with replacement from
the list sampling frame; these results could then be com-
pared with those using Methods 1 and 2 to determine if
the lack of a list was disadvantageous.

Results and discussion
Table 1 shows results for the complex population
(Fig. 1a) of 50,000 simulations of sampling with a sample
size (n) of 50 individuals. For Method 1, 5-m square
sample plots were used (a = 25 m2), and for Method 2,
25-m square plots were used (a = 625 m2).
With an area sampling frame for both Methods 1 and

2 and when sampling from a list sampling frame, the
mean of the simulation estimates of the individual tree
mean basal area was the same (at least to the nearest
0.001 m2) as the true mean, supporting the contention
that all three methods were unbiased estimators as ex-
pected for simple random samples. In all three cases, the
average of the simulation estimates of the standard error
of the tree mean basal area was close to that of the ac-
tual standard error of the 50,000 simulation estimates of
the mean. They were close also to the true standard
error of the population mean for a sample size of n = 50,

determined as Σi¼1…N yi−Y
� �2h in .

nN½ �g1
2= , where N

was the population size, yi was the value of the target
variable of the ith member of the population and Y ¼
Σi¼1…N yið Þ=N , that is, all three sampling methods appear

to have operated satisfactorily in estimating the mean of
the target variable and its standard error.
However, whilst sampling with an area sampling frame

yielded similar results for estimates of the mean of the
individuals as did sampling from a list sampling frame,
there was a price to pay for the absence of the list. In
the case of Method 1, an average of 1388 of the 5-m
square sample plots had to be visited to find 50 that
contained an individual to make up the required sample.
For Method 2, a larger, 25-m square, plot size was used
with a value of M = 8; that value of M was one more
than the maximum number of trees that occurred in any
sample plot. In that case, an average of 480 plots still
had to be visited to find the required sample of 50 indi-
viduals; if a higher value had been used for M, an even
greater number of plots would have to have been visited.
Where there was a list sampling frame, there was no
such cost and the sampler needed to visit only the 50
individuals selected from the list. Inevitably, there will
always be such a price to pay in the absence of a list
sampling frame; this is considered further below.
To estimate the population total basal area, an esti-

mate was required of the total number of individuals in
the population when Methods 1 and 2 were applied.
This estimate was made for any one sample using Eq.
(5). The results of Table 1 show that the true value (720
individuals) was estimated quite closely with Method 2
(averaging 723 individuals), but rather less closely with
Method 1 (averaging 734 individuals). The poorer result
with Method 1 no doubt reflects the fact that an average

Table 1 Results from 50,000 simulations of inventory of the complexly arranged population of individual trees (Fig. 1a) to estimate
individual tree mean basal area, number of individuals in the population and population total basal area, together with their
standard errors. In some simulations it was assumed that a list sampling frame was available and, in others, it was assumed that only
an area sampling frame list was available. Sample size (s) was 50 individuals. Sample plot size for Method 1 was 5-m square plots
and for Method 2 was 25-m square plots

Individual tree mean
basal area (m2)

Number of trees in
the population

Population total
basal area (m2)

True value 0.662 720 476

True standard error of a sample 0.036 – –

Sampling with an area sampling frame—Method 1

Mean of all simulations 0.662 734 486

Standard error of simulation mean estimates 0.036 104 74

Mean of estimates of standard error of simulation means 0.036 102 75

Sampling with an area sampling frame—Method 2

Mean of all simulations 0.662 723 478

Standard error of simulation mean estimates 0.036 43 35

Mean of estimates of standard error of simulation means 0.036 42 35

Sampling with a list sampling frame

Mean of all simulations 0.662 – 476

Standard error of simulation mean estimates 0.035 – 25

Mean of estimates of standard error of simulation means 0.035 – 25
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of 1338 of the small 5-m square sample plots contained
no individuals in taking any sample with that method
whilst only 50 (the sample size) contained an individual.
This accounts also for the rather large standard error
that accompanied these estimates (an average of 102 in-
dividuals). The many fewer plots visited and the many
more individuals counted in the case of Method 2 en-
sured its much smaller standard error of the estimates
(an average of 42 individuals) and much closer approach
on average to the true value. The corresponding results for
the estimates of the population total basal area (obtained
using Eq. 4) were close to the true value for Method 2 and
rather more deviant, with a much larger standard error, for
Method 1.
The average of the estimates from bootstrapping, used

in both Methods 1 and 2 to estimate the standard error
of the estimate of the total basal area, agreed closely
with the actual standard error of the 50,000 simulation
estimates, that is, bootstrapping as applied here appeared
to be an appropriate method to estimate the standard
error for any one sample.
The results of the simulations done with the regularly

arranged population depicted in Fig. 1b are given in
Table 2. It is evident that the regular arrangement has
yielded very satisfactory results for Methods 1 and 2, with
the averages of their simulations close to the population
true values and with much reduced standard errors of es-
timates for the population total basal area. Because much
larger, 25-m square, sample plots could be used in this
case with Method 1, an average of only 64 plots had to be
visited to find the 50 sample individuals, rather than the
1388 5-m square plots that had to be visited with the

complexly arranged population. For Method 2, an average
of 88 50-m square plots had to be visited rather than the
480 25-m square plots required in the previous example.
These reductions in sampling effort would make both
methods practically more feasible than was the case for
the complexly arranged population. They led also to sub-
stantial reductions in the standard errors of the estimates
of both population numbers of individuals and total basal
area, with Method 2 only slightly superior in this regard to
Method 1.
It is interesting to compare these results with those of

Gordon and Pont (2015), who tested a number of differ-
ent sampling methods to estimate the mean stem wood
volume of individual trees in five populations of planta-
tion Pinus radiata in New Zealand. Four of the popula-
tions varied in area over the range 1.3–2.3 ha, whilst the
fifth was 22.8 ha in area. A list sampling frame was avail-
able for each population with a detailed list of the trees
with their stem wood volumes and spatial locations.
Through simulation studies, they tested five sampling
methods that could be applied in the absence of a list
sampling frame to provide samples that aimed to mimic
simple random samples. They compared these results
with actual simple random sampling that used the list
sampling frame. In effect, their five alternative methods
involved forms of cluster sampling where sample points
were located randomly across the population area and
the trees that occurred in a plot surrounding those
points were included in the sample; that contrasts with
Iles’ approach where no more than one tree from any
such plot is included in the sample. Whilst the methods
Gordon and Pont used are not necessarily unbiased

Table 2 Results, in the same form as Table 1, from 50,000 simulations of inventory of the squarely arranged population of individual
trees illustrated in Fig. 1b. In this case, sample plot size for Method 1 was 25-m square plots and for Method 2 was 50-m square plots

Individual tree mean
basal area (m2)

Number of trees in
the population

Population total
basal area (m2)

True value 0.646 676 437

True standard error of a sample 0.036 – –

Sampling with an area sampling frame—Method 1

Mean of all simulations 0.646 679 439

Standard error of simulation mean estimates 0.036 44 38

Mean of estimates of standard error of simulation means 0.036 44 37

Sampling with an area sampling frame—Method 2

Mean of all simulations 0.646 678 438

Standard error of simulation mean estimates 0.036 39 35

Mean of estimates of standard error of simulation means 0.036 39 35

Sampling with a list sampling frame

Mean of all simulations 0.646 – 437

Standard error of simulation mean estimates 0.034 – 23

Mean of estimates of standard error of simulation means 0.034 – 23
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estimators, a number of the methods they tested gave
estimates of population means with only a slight bias
and often with precision close to that of simple random
sampling. However, none gave results that were com-
pletely consistent with simple random sampling across
the several populations they considered. Their methods
certainly reduce the effort involved in taking a sample of
any particular size when compared with the methods
considered here. However, if the sampler is willing to
live with the possible risk of some bias and less certain
estimates of precision when compared with actual sim-
ple random sampling, Gordon and Pont’s methods may
prove satisfactory.

Conclusions
The results showed that it is possible to take simple ran-
dom samples of individuals from a population that has
only an area sampling frame available. This may be done
using the methods of Iles (1979) that involve selecting
sample individuals from randomly located plots. Such
samples yielded results for population estimates of the
mean of individuals that were the same as those obtained
when a list sampling frame was available.
However, when Iles’ methods are used, a preliminary

survey of the population must be made before sampling
starts and it may be necessary to visit many more sam-
pling units to obtain the required sample than is the
case when a list is available. The more complex the
spatial arrangement of individuals within the population,
the greater will be the number of sampling units that
must be visited.
Not only estimates of the population mean but also es-

timates of the population total can be obtained when
sampling using Iles’ methods (Eq. 4). However, there will
be a reduction in the precision of those estimates be-
cause of the need to estimate, from the sample data, the
total number of individuals in the population. Estimates
of the standard error of these estimates may be obtained
satisfactorily using bootstrapping.
Because it is impossible to predict before sampling

how many sample plots will have to be visited to obtain
the required sample size, it must be recognised that the
methods used here preclude systematic sampling. In that
case, the number of sampling units to be visited at pre-
determined, regular intervals throughout the population
must be known in advance of sampling.
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