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ABSTRACT 
A set of growth and yield models for intensively managed Pinus radiata 

D. Don plantations in Tasmania have been constructed so that temporary 
inventory plot data can be used as the starting point for the simulation of 
stand dynamics. Stand-level increment models have been derived for mean 
dominant height, basal area, mortality, and volume. A combined parameter 
prediction and recovery method was used to forecast the parameters of the 
Weibull distribution which was used as a model of the diameter distribution. 
A model for the simulation of thinning has also been constructed. 

Where possible the models have been cast as generalised linear models and 
a quasi-likelihood approach was adopted in the modelling of the random com­
ponent of each model, resulting in an iteratively reweighted least squares 
procedure for the estimation of model parameters. A Poisson-like variance 
function was used to model the error variance of forecasts of stand variables -
mean dominant height, basal area, and volume. Binomial or binomial-like 
variance functions were used for the mortality, diameter distribution, and 
thinning models. 

Keywords: growth; yield; Weibull distribution; generalised linear models; 
Pinus radiata. 

INTRODUCTION 

The Tasmanian Forestry Commission currently manages 38 000 ha of Pinus radiata 
plantations with an expected annual planting rate of 800 ha. This represents a relatively 
small area compared to the area of native forests managed but the P. radiata resource 
is a relatively high-value crop. This is especially true for pruned stands from which a 
large volume of wood will be available from about 1990 onward. Prior to 1973 stands 
were mostly planted at either 1.83 X 1.83 m or 2.44 X 2.44 m spacing, the latter being 
the more prevalent, and were usually treated with frequent, late, and light thinnings. 
After 1973 intensive management regimes were adopted (Neilsen & Davis 1985). 
These regimes were based on New Zealand research (Fenton & Sutton 1968) and 
characterised by few, early, and heavy thinnings. Trees were generally planted at a 
spacing of 5 X 2.5 m for stands to be pruned (clearwood regime) and 3 X 2.5 m for 
non-clearwood stands. 

A simulation model which predicts volumes and piece sizes using the current 
temporary plot inventory system is required for long-term resource planning, and for 
5-yearly and yearly operational planning. This paper describes models of mean dominant 
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height (MDH) increment (from which a family of anamorphic site index curves can 
be obtained), basal area increment, volume (total volume from ground to tip) increment, 
mortality, and diameter (DBH) distribution, and one which allows the simulation of 
a thinning. The basal area increment function uses a stand density index developed by 
Lawrence (1976). 

The temporary plot inventory system provides the starting point for the simulator. 
The various stand variables are calculated from these plots at the measurement age 
and an increment function is applied for MDH, basal area, volume, and mortality (or 
a decrement function for stocking). In the DBH distribution model a hybrid of what 
Hyink & Moser (1983) called parameter prediction and parameter recovery methods is 
used to predict the parameters of the Weibull probability density function (pdf) which 
is assumed to describe the DBH distribution. A parameter prediction method is used 
to obtain the model which distributes the thinnings across the DBH classes. 

This paper has a dual purpose. Firstly, it describes the above models, their form, 
application, and, for volume, performance. Secondly, it describes the statistical 
methodology used to develop the models. This methodology involves generalised linear 
models and quasi-likelihood theory which are relatively recent developments in statistics. 
Some readers will prefer to ignore some of the details of the statistical methods and 
this can be done without loss of understanding of the models and their application. 

Notation 
"measurement" number 
stand variable at measurement k 
age at measurement k 
expected value (mean) of yk conditional on the model 
variance function 
dispersion and variance function parameters 
parameters for increment models, Weibull shape parameter model and 
thinning model 
Weibull pdf shape, scale, and location parameters 
asymptote parameter 
DBH over bark (cm) 
mean dominant height (m) 
site index (m) (mean dominant height at age 20) 
stand volume (m3/ha) 
basal area (m2/ba) 
maximum basal area (m2/ha) 
stand density index (%) 
reduction in Sddue to thinning (%) 
pruned ratio (pruned height///) 
stocking (stems/ha) 
number of stems on the plot 
mortality between ages 4 and £k-i (stems/ha) 
7r/[4(10O2)] constant to convert DBH2 to basal area 
V { B/(K N) } quadratic mean DBH (cm) 
years since last thinning or time between two ages 

k 
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DATA 

Three series of research plots were used to construct the models. They were: 

Plantation Yield Plots (PYP): These plots consist of a large number of permanent 
0.06-ha rectangular plots established in the old regimes and measured generally every 
3 years. The data from unthinned PYP were used to develop the stand density index 
and the mortality functioa 

Plantation Growth Plots (PGP): These plots are the current series of permanent plots 
with plots established after 1973, in general, treated under the new regimes. These 
plots are rectangular and generally 0.08 ha in size. About 56% of the current number 
of 405 plots were established as PYP and converted to PGP by treating them (i.e., 
thinning and/or pruning) in line with the new regimes. 

Thinning plots: Five series of these permanent plots have been established. Each series 
consists of 20, 0.06-ha, contiguous plots. For each plot a different thinning and/or 
pruning regime is applied. These plots, as with the PGP, are measured annually but 
differ from the PGP in their layout and the fact that the treatments cover a wider 
range of thinnings than currently used in practice (and sampled by the PGP series). 
For the following, PGP will refer to both the PGP and thinning series of plots. 

Thinnings were removed in a way that allowed retention of good form, larger 
stems with form taking precedence over size in selection for retention. Some plots 
were row thinned with extra thinnings obtained from between the outrows and retained 
trees selected as above. 

Pruning involved three lifts of 2.1, 4.3, and 6.4 m. 

Since the models to be constructed were stand-level models, stand-level data were 
obtained at the first measurement and then at each measurement at which a thinning 
or pruning occurred and finally at the last measurement. Measurements at which no 
treatment of the stand occurred were ignored. This was done to make the database 
more manageable and reduce the influence that multiple measurements would have 
on statistical tests of model parameters (West et al. 1984). The resultant loss of infor­
mation was limited by the high degree of serial correlation between consecutive 
measurements. Information on the shape of the basal area growth response to thinning 
and pruning is sacrificed at an individual-plot level by doing this. However, such growth 
responses can still be estimated from the data across plots. The full data set would be 
required to carry out a two-stage or random coefficients approach (West et al. 1984) 
to modelling but such an approach is impractical with models as complex as the basal 
area increment function developed here. 

As a result, 847 measurements on 359 plots were available for model building 
where, for the following, references to measurements will be taken to mean this 
reduced data set. For basal area and volume, although the at-thinning measurement of 
the PGP plots is a single measurement, these stand variables are calculated both before 
and after thinning. This ambiguity is avoided by the convention, used for the following, 
that for both the fit of the models and their application (a) if basal area or volume, 
at thinning, are forecast values (or observed values to be compared to a forecast) they 
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refer to standing plus felled but excluding dead trees, and (b) if they are initial values 
at the start of a forecast period they refer only to standing live trees. All basal area and 
volume figures are net values which exclude mortality. A summary of the PGP plot 
data is given in Table 1. Volume data were derived using the individual-tree volume 
equation described by Candy (1989) which required as input the tree DBH, total height, 
age, and bark thickness. To obtain tree total heights a sample of between 15 and 20 trees 
were measured on PGP plots, with seleaion of sample trees weighted towards the 
larger DBH classes. The total height of the unmeasured trees was obtained using a 
regression of the logarithm of total height on the reciprocal of DBH applied to the 
plot measurement using the above sample. 

TABLE 1-PGP plot data summary—-Stand variables 

Stand variable 

Age (years) 
Site index (m) (MDH at age 20) 
MDH (m) 
Stocking (stems/ha) 
Basal area (m2/ha) 
Number of "measurements" 
Time interval between 
"measurements" (years) 
Number of thinnings 
Pruning height (%) 
Stocking removed (%) 
Basal area removed (%) 
Maximum basal area (m2/ha) 
(function of MDH) 
Stand density index (%) 
Mean mortality rate 
before thinning (stems/ha/year) 
Mean mortality rate 
after thinning (stems/ha/year) 
Volume (m3/ha) 
CAI (m3/hatyear) 

Mean 

12.8 
27.8 
18.5 

689.1 
27.9 

1.9 

3.9 
1.6 

15.5 
46.7 
38.9 

49.4 
47.7 

4.6 

3.6 
181.2 
23.8 

Minimum 

4.0 
16.4 
5.0 

166.7 
1.5 
1.0 

0.2 
0.0 

12.1 
9.7 
6.2 

3.3 
8.2 

0.0 

0.0 
3.0 
1.9 

Maximum 

40.0 
42.0 
43.8 

1866.0 
109.1 

4.0 

19.0 
3.0 

70.5 
85.9 
78.4 

98.4 
150.0 

46.5 

73.7 
1256.0 

78.1 

For the DBH distribution model, a DBH class frequency table using 4-cm classes 
from 6 cm onwards and a top class of 50 cm and greater was constructed for each 
measurement. This gave 12 classes. To construct the thinning model the DBH class 
frequency table was constructed before and after thinning for each at-thinning measure­
ment but with trees removed by row thinning excluded. A total of 548 thinning 
measurements of 303 plots was obtained in this way. 

The mortality model was constructed from 1282 measurements of 285 unthinned 
PYP plots. Of the 1282 measurements, 1198 were taken on plots in stands of nominal 
square spacing of either 1.83 or 2.44 m (Table 2). 
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TAB LE 2WyP plot data summary. Summaiy of the data for 1282 measurements of the unthinnedPyP 
plots used to construct the mortality function as described in the text 

Stand variable 

Age (years) 
Site index (m) (MDH at age 20) 
Stocking (stems/ha) 
Number of measurements 
Time interval between measurements 
(years) 

Mean mortality rate (stems/hatyear) 

Mean 

13.1 
29.3 

2028.0 
4.4 

4.5 
27.8 

Minimum 

6.1 
19.9 

650.0 
4.0 

0.3 
0.0 

Maximum 

44.0 
39.0 

3983.0 
6.0 

30.3 
425.9 

STATISTICAL METHODOLOGY 
The general form of the increment model used here for a general stand variable, 

y, is given by 

y* = ?k-i/(^k-i,'kA-i,/3) +£k (1) 
where 

?k, yk-i are the values of y at ages h,h-i (>k-i<*k) 
Yk-i is a vector of stand variables at age /k-i 
p is a vector of unknown parameters 
e* is a random error. 

Thus the value of a stand variable, y, at time /k is forecast conditional on its own 
value and that of other stand variables at time *k-i- Although for the following reference 
will be made to increment models, the form of the model will be given by Eqn (1). 
The increment, Ayk = yk-yk_i, is implied in Eqn (1) and is given by 

Ayk = yk-i[/(Yk_iAA-i,/3) - 1] + ck. 
Note that the error term, e, and thus the residual from the fitted model, is the same 
whether the model is expressed in terms of yk or A k̂. The mortality and volume 
increment functions are slight variations of this general form. 

Given the high positive (serial) correlation of the values of a stand variable over 
time between stand treatments then, from a known point (i.e., age ^k_i), the observed 
and forecast trajectories will tend to diverge. Therefore, for the MDH, basal area, and 
volume increment models a variance function of the following form was used 
where 

Var(ek) = O V ( f t k ) (2) 
V(ftk) = (juk — yk_i)x 

/xk = E(yk | Yk-iAA-ij/S) *&& O is a dispersion parameter. 

The variance function is given by V(.) and /xk is the conditional expectation of yk. 
Attention was restricted to two particular funaions, the gamma-like (A—2) and the 
Poisson-like (A=l). The resulting variance functions are analogues of the variance 
funaions for the gamma and Poisson distributions respeaively. These funaions allow 
the variance of yk about its forecast, /xk, to increase as the forecast increment 
(/̂ k-Jk-i) increases, which mimics the divergence of trajeaories described above. 
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Thus, no distributional assumptions are made concerning y but rather the assumption 
specified by Eqn (2) is used to determine estimation and testing procedures based on 
the quasi-likelihood theory developed by Wedderburn (1974). In practical terms the 
estimation of /3 is carried out by an iteratively reweighted least squares (IRIS) algorithm 
with iterative weights given by l/V(/tk). An estimate of <D can be obtained as the 
residual mean deviance (McCuUagh & Nelder 1983). The deviance is the likelihood 
(or quasi-likelihood in this case) equivalent to the residual sum of squares for normal 
distribution (or constant error variance, A=0) models and is used in the same way to 
test the significance of the change in the deviance due to fitting a series of nested 
models. The mean residual deviance is the equivalent to the residual mean square. The 
IRIS used-defined-model facility availble in GLIM (Numerical Algorithms Group 1985) 
was used to fit the MDH, basal area, volume increment, and mortality models where 
the variance function in this last case is of a slightly different form to Eqn (2) as 
described below. The deviance functions corresponding to A=l,2 are derived in 
the Appendix. 

For the mortality model, a binomial-like variance function which has a similar 
effect to the Poisson-like function described above was used. If yk is stocking (N) at 
age *k and mortality is given by Mk = y^i -y* then this variance function, condi­
tional on yk_i, is given by 

V(/*k) = ftk(yk-i-ftk) (3) 
where 

fik = E(Mk | Yk_i>/kA-i,£). 

The above variance function is equivalent to that obtained by scaling the binomial 
variance function, obtained by considering mortality as binomially distributed condi­
tional on yk_i, by multiplying by yk-i. If the binomial variance function is used then 
the assumption that the variance of the proportion mortality (i.e., Mk/yk_i) decreases 
as the binomial sample size 3/*k-i ( = N*, the number of trees on the plot), increases 
is implied. The above variance function can be used to model the conditional variance 
of any stand variable that is constrained to lie between zero and a known value (i.e., 
yk-i in this case). The corresponding deviance function for Eqn (3) is not derived here 
since it is simply that for the binomial (see Nelder & Wedderburn 1972) divided by 
yk-i and can be employed in either GLIM or GENSTAT (Numerical Algorithms Group 
1983) using a binomial distribution with prior weights given by 1/^k-i-

The applicability of a particular variance function was tested by plotting generalised 
Pearson residuals (McCuUagh & Nelder 1983) given by (;Vk-/*k)/VV(/x.k) against the 
fitted values, /x.k or /tk-yk-i in the case of increment models. The Pearson residuals 
should appear more homoscedastic than standard normal residuals (A=0), y^-fa, 
if the variance function models reasonably well the conditional variance of y. 

MDH Increment/Site Index Model 

A form of the widely used Richards (1959) model was used to model the MDH/age 
relationship. This model is defined as 

H = A(l-exp {-at } ) p (4) 

where H is MDH, / is age, and A, a, /3 are parameters, A being the asymptote. This 



118 New Zealand Journal of Forestry Science 19(1) 

model can be expressed conditional on known H at age /k-i (i.e., flk-i), where k 
indexes one in a series of ages, as 

Hk = H^xUX-exp {-ah} )/l-exp { -<* *k_i } ) } P (5) 

This model was fitted to the data using the MDH/age series from the PGP plots 
with Hii,...,Hi,n _i/tii, .../il,n-i as independent variables in the fit with Hi2,. . . 

Hi>n as corresponding dependent variables where the i subscript is introduced to refer 

to plot and ni is the number of measurements on the #th plot. 

If 4_i is replaced by 20, *k by the general term t, Hk_i by site index, S, and 
Hk by the general term H in (5), then the result 

H = S[(l-exp {-<x t })/(l-exp{-a 2 0 } ) } P (6) 

defines a family of anamorphic site index curves with A being the indexing parameter. 
Given a known MDH (i.e., from a measurement of a temporary plot), then site index 
can be estimated by solving Eqn (6) for S. An alternative polymorphic series using the 
Richards model was used by Garcia (1983) by defining the shape parameter a as the 
indexing parameter. This assumes that the MDH converge to a single asymptote inde­
pendent of site index. Such a trend was not observed in the data but rather the 
anamorphic series indexed by A was indicated, and so this form of the site index model 
will be retained for the following. 

The conditional model was the form of the MDH/age relationship fitted here 
although a different parametrisation was used. The generalised linear model, glm, 
(Nelder & Wedderburn 1972) parametrisation was used to allow the IRLS algorithm 
available in GUM to use variance functions of the class described by Eqn (2). The 
glm parametrisation of Eqn (5), using Thompson & Baker's (1981) composite link 
functions, is given by 

Hk = H^exp { filln(l-exp{ - a /k } )-ln(l-exp { - a h-i } )] } (7) 

Besides the availability of IRLS in GLM, the glm parametrisation, in the author's experi­
ence usually has few problems with lack of convergence of parameter estimates. The 
model given by Eqn (7) was initially fitted to the PGP data using unweighted least 
squares. Graphical examination of Pearson residuals for A.=0,l,2 versus predicted incre­
ment, Hk-Hk-i, was carried out. The case of A=l was chosen for fitting the model 
using IRLS. This was also the choice for the basal area and volume increment models. 
Discussion of the relative merits of these variance functions for all three increment 
models is left to the end of the paper. The resulting estimates and their standard errors 
are given in Table 3. The resultant family of MDH/age curves for selected site indices 
is shown in Fig. 1. 

TABLE 3-Parameter estimates for mean dominant height (MDH) (Eqn 7) 

Parameter Estimate Standard error 

O 0.06248 0.00176 
P 1.633 0.026 

& = 0.2769 
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FIG. 1—Anamorphic site index curves. 

Basal Area Increment Model 

Two forms of the basal area increment function were fitted. The first was the 
Richards model as given by Eqn (4) with H replaced by basal area B. An alternative 
form based on a Gompertz function was also tested where the yield form of the model 
is given by 

B = Aexp { -exp[a+/3ln(t)] } (8) 

while the conditional form of the model is given in the glm parametrisation by 

Bk = Bk_1exp{expla+pin(tk-1)} -exp[+/3ln(tk)] } (9) 

The only difference between this model and the Gompertz is that in the Gompertz 
ln(t) is replaced by t in the above equations. The author has found the model based 
on Eqn (8) as good as, if not superior to other three-parameter asymptotic yield functions 
in its ability to model different shapes of yield/age relationships. 

In both the Richards- and Gompertz-like models the parameters a and (3 were 
replaced by models incorporating combinations of the stand variables: site index (S), 
stand density index (Sd), thinning index (St) (i.e., the reduction in Sd due to thinning), 
time since last thinning (T), and pruned height ratio (Pr ).The stand density index 
used was constructed by Lawrence (1976) using 2120 measurements of 790 unthinned 
PY P. The index is given by 100 B/Bt where Bt is the predicted maximum basal 
area for a stand of given MDH (i.e., a fully stocked stand) and Bt is given by 

Bt = 229.568 In { 1.7399 - 0.8633/«#(ff/30.48)} . 

This model was constructed by grouping the measurements in 1.5-m MDH classes 
and calculating the mean of the top 5% of stand basal areas. The model was obtained 



120 New Zealand Journal of Forestry Science 19(1) 

by nonlinear regression using the above mean basal areas as the dependent variable. 
Alder (1979) developed a similar relationship between maximum stand basal area 
and dominant height using a Richards model. Lawrence found that Bf given MDH 
was independent of site index. Thus stand density index can be quoted as the percen­
tage of maximum basal area that current basal area represents. The trajeaory of the 
Bt versus age curve for selected site indices is shown in Fig. 2. A referee has pointed 
out that before regular (i.e., density-dependent) mortality commences the definition 
of maximum basal area is heavily dependent on the range of stockings in the PYP 
database. This is a valid point but in application only initial stockings greater than 
roughly 3000 stems/ha would be outside the range of the PYP data and such high 
initial stockings are not used in Tasmania. The thinning index used was simply 
100 Bt/Bt where Bt is the basal area removed in thinning. Time since last thinning 
(Tk) is the number of years to age h. from the last thinning. The pruned ratio is the 
ratio of pruned height to MDH at the time of pruning and is zero for measurements 
other than at pruning. 

E i i i I i i i l _ i i i I i i • l « i i I 
10 14 18 22 26 30 

AGE (years) 

FIG. 2—Maximum basal area by site index. 

Of all the models tested the best model in terms of residual deviance, based on 
A=l , was that based on Eqn (9) but with a varying with k where 

2 

a = a k = a0 + &iS + a:25
,
d + a35,

d + a4St + a5StTk + a6Pr (10) 

I i 2 

The resulting parameter estimates and their standard errors are given in Table 4. 
The addition of a location parameter to the model by in effea replacing t with P-t0 

in Eqn (8) did not significantly (p >0.10) improve the fit of the model. 



Candy — Growth and yield models for Pinus radiata in Tasmania 121 

TABLE 4-Parameter estimates for basal area (Eqn 9,10) 
Bk = B^exp {exp[a^Ht^-^xp[a^ln{t^\} 
a = ak = a0 + a15 + as5d+a3Sd

2 + a45t + a55tTk + a<Pr 

P = P0 + P15 + P25d + p35d
2 + p4Pr 

Parameter 

a o 
a . 
« 2 

« 3 

« 4 

« 5 

« 6 

Po 
P, 
P* 
Ps 
P4 

Estimate 

3.396 

-0.02317 

-0.01040 

1.381 x IO4 

0.3452 x IO"2 

-0.7331 x IO"4 

-0.1338 

0.2061 

-0.01457 

-0.7553 x IO"2 

-0.2655X1O4 

-0.1157 

Standard error 

0.125 

0.00304 

0.00293 

0.252 xlOr4 

0.0740 x IO"2 

0.3627 x IO"4 

0.0655 

0.0661 

0.00249 

0.1404 x IO"2 

0.1326 x IO"4 

0.0521 
A 
0 = 0.6180 

The base form of the Gompertz-like model given by Eqn (8) and (9) has the 
property of compatibility described by Qutter (1963) as a desirable property for any 
growth and yield system of models. By compatibility it is meant that the forecast of 
Bk+i made conditional on Bk_i and thus made in a single step is identical to the 
forecast of £k+i made in two steps the first of which forecasts #k conditional on 
J3k_i and the second forecasts #k+i conditional on this forecast of #k. However, 
the model given by incorporating the above models of a and /3 does not have this 
property. The issue of compatibility does not arise in the fit of the model to the data 
because the model in this case always forecasts £k+i conditional on the known value 
of Bk rather than a forecast value of Bk. In application of the model only one known 
initial value of basal area is available, the value at the measurement of the temporary 
plot. Therefore, to be consistent with the way the model was fitted, any future forecasts 
should be made conditional on the known values of B and other stand variables up 
until the next simulated treatment of the stand where thinning and/or pruning is 
applied. The values of the stand variables are then recalculated at the treatment age and 
resultant values, (after removing simulated thinnings) used as the initial starting point 
for further forecasts. 

The property of compatibility could be restored by dropping the terms involving 
Sd in Eqn (10) and, in application to forecasts between stand treatments, by carrying 
forward the values of Pr and St through to each forecast age. However, when terms 
involving Sd were dropped from Eqn (10) and the model refitted there was a 53% 
increase in the residual deviance compared to the full (non-compatible) model. Given 
that the non-compatible model is applied in the same way that it was fitted to the 
data, as described above, then this model is recommended because of its greater 
precision of forecasts. 
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Mortality Model 

The mortality model was fitted to the PYP data for which stocking was sufficiently 
high and plots remained unthinned to suflSicient ages for regular mortality to be 
adequately expressed. The general form of the model used was 

ft* 
Mk = Nk_! [1 - exp { - V(t)dt} ] (11) 

J *k-i 
where M and N are mortality and stocking respectively, both expressed as stems per 
hectare, and r)(?) is a function of stand variables as well as age. The best model was 
found to be ln{y\) a quadratic function of / plus a linear component involving site index. 
To fit this model using GLIM the following approximation to the integral in Eqn (11) 
was used 

Ch. 2 
v(t) dt^T exp(/30 + fiiS + f32Tm + /33rm) 

J/k-1 
where T = /k - /k_i and Tm = (tk + /k-i)/2. 

Examination of Pearson residuals suggested the variance function given by Eqn (3) 
was most appropriate. As a result the model given by Eqn (11) was fitted to the data 
using IRLS and GUM using 1/Nk_i as prior weights and an assumed binomial distri­
bution for Mk conditional on Nk_i. The parameter estimates and their standard errors 
are given in Table 5. The stocking trajectory for selected initial stockings at age 10 
combined with selected site indices is shown in Fig. 3. 

TABLE 5-Parameter estimates for mortality (Eqn 11) 

Mk = 7Vk_1[l-«p{-j'k n(t)dt}] 

Parameter 

Po 
Pi 
p2 
Ps 

Estimate 

-12.68 

0.1255 

0.4458 

-O.00837 

Standard error 

0.42 

0.0123 

0.0178 

0.00045 

The above class of model and estimation procedure is described by Candy (1986) 
for fitting survival models with a log-linear hazard (i.e., age-specific mortality rate) 
function (McCullagh & Nelder 1983). The only difference here is that the variance 
function (3) is used rather than a binomial. The above model gave a better fit to the 
data than the model based on the Weibull survival-time distribution, for which te(^) 
is a linear function of bi(t), since its form of the hazard function is more flexible than 
that of the Weibull. The improved fit is noticeable when stands are sufficiently developed 
that the mortality rate slows down after most of the suppressed trees have died. For a 
general discussion of such effects of heterogeneity in populations see Vaupel & Yashin 
(1985). 



Candy — Growth and yield models for Pinus radiata in Tasmania 123 

3000 

2000 Y-

P 1000 t -

Ei JLJL 1 1 1 
10 14 18 22 

AGE (years) 
26 30 

FIG. 3—Stocking curves for unthinned stands. Site index 30 ( ), 20 (-

Volume Increment Function 

By defining the following relationship between volume V, and forecast values of 
B and H 

V = exp {Po + PMH) + (32ln(B)} (12) 

then the following conditional model can be derived 

Vk = exp{lnVk^ + PMH^/H^L) + fiMB^/B^O } (13) 

where if measurement k-\ is taken at thinning then Kk_i and Bk-i are the volume and 
basal area, respectively, after removing thinnings. Both models (12) and (13) were 
fitted to the data using IRIS. The Poisson-like variance function was used to fit Eqn 
(13) and a gamma variance function for Eqn (12) (i.e., variance function the square 
of predicted volume not predicted increment). To compare the fit of these models 
directly the forecast values of Fk from both models were used to calculate <x> using the 
deviance function based on the Poisson-like variance function. It was found that for 
thinned stands Eqn (13) was more accurate (<j) = 4.382) than Eqn (12) ( <j> = 4.756). 
The accuracy for both models was considerably worse for unthinned stands but Eqn (12) 
was more accurate (<$ = 6.484 compared to 8.949). 

Eqn (12) is a variant of the well known Schumacher's yield model. Borders & Bailey 
(1986) used equivalent forms of Eqn (12) and Eqn (13). However, they used a predicted 
value for Fk-i in Eqn (13) by applying Eqn (12) with B = £k_i and H = Hk_i. Here 
Eqn (13) simply reduces to Eqn (12). Using an actual value of Kk_i (Le., at the 
measurement of the PGP or, in application, the temporary inventory plot) is equivalent 
to allowing (in in Eqn (12) to vary as 

/?0* zzz fe{Fu/(Hw
 Pl B M * ) } . 

Thus if the timing, intensity or type of thinning affects /30* then Eqn (13) takes this 
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into account without an explicit model for the effect of thinning. For example, it was 
found that /3 0 * calculated using Eqn (13) estimates of /Ji and /32 was significantly 
(p <0 .001 ) positively correlated (R = 0.212) with St for thinned measurements. 

In application, for forecasts from an age where a simulated thinning has been 
applied, J^-i is predicted rather than known; however, as described later in the section 
on application of the models, Kk-i is predicted in a way that takes thinning into 
account. 

The poorer accuracy of Eqn (13) for unthinned stands cannot be explained at this 
time so it is recommended that Eqn (12) be used for unthinned and Eqn (13) for 
thinned stands. 

The parameter estimates for each model and <J) are given in Table 6. 

TABLE 6-Parameter estimates for the volume increment model 

Parameter Estimate Standard error 

Eqn 12 V = exp (P0 + ^ln(H) + P2/h(S)} 
P0 -0.7466 0.0289 
Pj 0.8579 0.0157 
P2 1.007 0.009 

A 

<& = 0.01486 (gamma) 
= 5.088 (Poisson-like) 

Eqn 13 Vk = exp {faVw + lxWJHJ) + $2HBJB^)) 
Pj 0.8992 0.0254 

P2 1.001 0.025 
A 

<& = 5.261 

Validation of the Volume Increment Function 

Due to limitations on space it is not possible to present detailed results for each 
increment model here. The overall accuracy for each model is given in Tables 3 and 
4 in the form of the estimate of O . Greater detail is given here for the volume 
increment function since it is of most interest to users and its accuracy depends on 
the accuracy of forecasts from the basal area and MDH increment functions. Examina­
tion of residuals revealed no serious problems with these models. 

The mean bias of forecasts of V, the standard error of the bias, mean predicted 
increment, and O are given for the PGP data, using Eqn (13), for each cell of the 
site index class by age class table given in Table 7. The results are for thinned stands 
only. Note that the estimate of 0 is a function of both the precision and bias of 
forecasts. 

An estimate of <3>, calculated as the mean residual deviance, can be used to estimate 
the prediction error variance of a single forecast of V. Based on Eqn (2) the variance 
of the prediction error (PEV) is given by 

PEV(Vk) = E{ (h - Fk)2 } = & ( £ k - Fk-X). 
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TABLE 7-Results for the volume increment function (m3/ha, except for O and n). Results for cells 
where the number of plot-measurements,«, is less than 6 are not shown. 

Site index 
class 

<20 

20-25 

25-30 

>30 

Mean bias 
s.e. (bias) 
Pred. inc. 
<l> 
n 
Mean bias 
s.e. (bias) 
Pred. inc. 
<t> 
n 
Mean bias 
s.e. (bias) 
Pred. inc. 
$ 
n 
Mean bias 
s.e. (bias) 
Pred. inc. 
O 
n 

<10 

-1.3 
0.8 

11.5 
0.47 
6 

-0.4 
1.0 

17.1 
1.15 

30 
-0.3 
0.5 

17.1 
0.64 

59 
-0.2 
0.4 

14.7 
0.60 

61 

10-15 

-2.1 
0.8 

11.3 
0.60 
9 

-1.3 
0.8 

17.3 
0.64 

43 
-4.0 

1.7 
57.3 

1.74 
82 

1.8 
3.1 

105.5 
3.11 

32 

Age class 
15-20 

— 
-
-
-
-

10.7 
3.6 

72.0 
4.32 

25 
4.9 
4.2 

130.0 
5.38 

60 
-3.0 
4.7 

204.0 
2.67 

30 

(years) 
20-25 

— 
-
-
-
-
— 
-
-
-
-

-3.6 
6.7 

220.6 
8.29 

37 
-22.2 

7.6 
277.6 

7.80 
34 

25-30 
— 
-
-
-
-
— 
-
-
-
-

-11.7 
6.9 

238.3 
7.57 

30 
-8.2 
10.9 

236.0 
11.38 
37 

>30 
— 
-
-
-
-
-
-
-
-
-

-10.5 
8.6 

119.2 
9.28 

16 
-8.1 
9.7 

123.5 
10.70 
16 

Overall, the bias in forecasts of volume was -1.0% (s.e. 0.4%) and the standard 
error of a forecast for an increment over 5 years of 119m3/ha (i.e., the average for 
thinned PGP plots) was 22.8 m3/ha. 

DBH Distribution Model (Stand Table Generation) 

The approach used to model the diameter distribution was a composite of the 
parameter recovery and parameter prediction methods described in general by Hyink 
& Moser (1983). The three-parameter Weibull pdf was adopted here to describe the 
DBH distribution represented by the DBH class frequencies described earlier. For 
the fit of the model, the observed is compared to the predicted distribution immedi­
ately prior to thinning (for an at-thinning measurement). The three-parameter Weibull 
pdf is given by 

f(D,c,0A) = c&-i { (D-d0)/0 } ^exp[r { (D~do)0 ) cl 
where D is DBHob and c, 0, and do are the shape, scale, and location parameters 
respectively. The corresponding cumulative density function {edj) is given by 

F(D,c,eA) = 1 - expl- { (D-do)/0 } c). 

An alternative parametrisation of the above cdf is given by 

F(D,c,0,do) = 1 - expt-exp {0* +c ln(D-d0 } ] (14) 

where 0* = ~c ln0. 

If do is assumed known this parametrisation is a glm referred to as the complemen­
tary log-log link model. 



126 New Zealand Journal of Forestry Science 19(1) 

The first stage in deriving the DBH distribution model was to identify a model for 
the shape parameter in terms of stand variables which could be forecast from the 
models already described. To identify such a model an estimate of the shape parameter, 
c, was obtained for each measurement within each plot to give 847 estimates of c. 
The data used in the fit were the cumulative number of stems across DBH classes. The 
form of the model fitted is given by Eqn (14). An assumed binomial distribution was 
used for the class cumulative frequency with binomial denominator given by N*k, 
the number of live stems on the plot. The GENSTAT programme was used to fit this 
model. In this fit, as well as the shape parameter, the scale parameter 0 was estimated 
via 0*. The location parameter, do, was not estimated but was fixed by taking its 
value as the lower limit of the first DBH class to have a non-zero frequency. The scale 
and location parameters were not of interest in themselves at this stage as will be 
explained later. The resulting 847 estimates of c obtained above were then regressed 
on other stand variables and the best model was found to be that given by 

c = exp(ji0 + )3iH + #>N + fcQ) (15) 

where Q is the quadratic mean DBH calculated as Q = V { B/(K N)} and K is the 
constant 7r/[4(1002)} required to convert DBH2 to basal area. The subscript referring 
to the measurement number where absent is assumed to be k for the following since 
the forecast of the Weibull parameters is required at age Jk. The parameter estimates 
obtained in the fit of Eqn (15) were not the final estimates but were used as initial 
estimates in the next stage of the estimation procedure which involved simultaneously 
re-estimating the parameters in Eqn (15) and recovering the scale parameter. An 
estimate of the location parameter, do, is also required. The procedure, adopted above, 
of fixing this parameter using the first non-zero DBH class obviously cannot be used 
at the forecast age so various models of do were tried. It was found that the best and 
simplest approach was to fix do as the lower limit of the first non-zero class at age *k-i» 
which in practice means that do is calculated from the stand table at the start of a 
forecast period. In the case of a forecast period beginning with a thinning, do is 
obtained from the after-thinning stand table. 

The final model was fitted using the generalised optimisation procedure in 
GENSTAT where the above model for c was fitted, the value of do was obtained from 
the last measurement as described above, and simultaneously the value of 0 was 
recovered using Q as follows. 

The value of Q predicted from the Weibull, gw, is obtained using the following 
integration 

Q2
W = | ™ D*f (D,c,0A)dD 

J do 
2 2 

= /*d + Od, 
2 

where /xd and o-d are the mean and variance of the above Weibull distribution, 
[Ld = do + OT(1 + 1/C) 
o-2 = 02iT(l+2/c) - r 2 ( l + l A ) } 

<i. 

and r(.) is the gamma function. Therefore the scale parameter, 0, can be recovered, 
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given estimated values of c and d0, by equating Qw to the observed value of Q which 
requires solving the following quadratic for 0. 

02r(l + 2/c) + 20 r(l + l/c)do + dt - Q2 = 0 (16) 

T o solve the above quadratic in the optimisation procedure set up in GENSTAT 
the following approximation to the gamma function used by Garcia (1981) was used 
where 

r ( l +x) £* 1 + otix + a2x
2 + otsx3 + a 4 x 4 + a5x

5
9 0 < x < 1 

= *r(*) x > l, 
ax = -0 .5749 , a 2 = 0.9512, a 3 = -0.6999, a 4 = 0.4246 and a5 = -0 .1011 . 

The function that was minimised was the deviance as defined for a binomial 
distribution for the observed cumulative frequencies conditional on N k * . Examination 
of the Pearson residuals suggested the binomial variance function was more appropriate 
than that given by Eqn (3). The estimates of the parameters in Eqn (15) obtained in 
the above optimisation along with their standard errors are given in Table 8. The extra 

TABLE 8-Parameter estimates for Weibull shape parameter (c) (Eqn 15) 

c=«p(p0+p1i/+p2^+p3e) 
Parameter Estimate Standard error 

P0 1.2247 0.0393 
Pj -0.01865 0.00232 
P2 -0.2168 x IO'3 0.0370x IO3 

P3 0.01909 0.00239 
A 

$-1.1333 

effort above to obtain estimates of these parameters while simultaneously recovering 
the scale parameter was worthwhile since it resulted in a 2 7 % decrease in the residual 
deviance compared to that obtained using the initial estimates. However, the estimates 
of the standard errors of the initial estimates are given in Table 8 since it was felt 
that the equivalent estimates obtained in the simultaneous fit were gross under-estimates. 
The reason for this is probably the fact that the observed cumulative frequencies are 
interdependent for a plot-measurement whereas the individual plot-measurement 
estimates of c are more independent of each other. 

T o examine graphically the goodness of fit of the Weibull model, the D B H class 
frequency data and the corresponding forecast frequencies were aggregated to give 
the three-way table of D B H by quadratic mean D B H by thinning classes. To do this 
the quadratic mean DBH, Q9 for each measurement within each plot was grouped into 
5-cm classes between 20 and 40 cm and including < 20-cm and > 40-cm classes. With in 
each cell of the D B H by quadratic mean D B H table the data were separated according 
to whether the measurement occurred before or after the first thinning. The relative 
observed and forecast frequencies for the above classes for measurements after thinning 
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are shown in Fig. 4 where the observed rather than the forecast value of Bk was used 
in the parameter recovery procedure. The corresponding results for measurements' 
before thinning are not shown but the fit of the Weibull appeared just as adequate as 
that seen in Fig. 4. 

Alternative methods of predicting/recovering parameters of the Weibull distribution 
to that used above were employed by Garcia (1984) and Knoebel et al. (1986 and 
references therein). 

A. Quadratic mean DBH <20cm 

LOL 

0 24,— D. Quadratic mean DBH 30-35 cm 

j __ B. Quadratic mean DBH 20-25 cm 

<10 14-18 22-26 30-34 38-42 46-50 
10-14 18-22 26-30 34-38 42-46 >50 

DBHob (cm) 

. E. Quadratic mean DBH 35-40 cm 

h n-nHl 

. F. Quadratic mean DBH >40 cm 

<10 14-18 22-26 30-34 38-42 46-50 
10-14 18-22 26-30 34-38 42-46 >50 

DBHob (cm) 

FIG. ^-Relative stocking frequency by DBH class for thinned stands. 

Thinning Model 

After forecasting the stand variables up to the thinning age and determining the 
before-thinning DBH distribution as described above, the after-thinning stand table 
can be obtained by the user manually removing a number of stems from each DBH class 
or by allowing a thinning model (or algorithm) to be applied. In the latter the propor­
tion, Pn, of the total number of stems to be removed is specified. The thinning model 
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distributes the number of stems removed, across the DBH classes. There are two obvious 
constraints that need to be incorporated in this model. Firstly, the number of stems 
removed in a DBH class should be less than or equal to the number of stems in the 
class before thinning. Note that this constraint might not be satisfied if, rather than 
apply the thinning model below, the after-thinning stand table is obtained by applying 
Eqn (14), (15), and 16) using after-thinning values of H, B, and N. Secondly, the 
total of removals across the DBH classes should sum to the total removed which is 
input to the model. The model used here is given by 

P, = (1-Pn)exp {-*xp(*,)} + P„ ;i < / <j2 (17) 
' = 0 j<jl,j>j>2 

where Pj is the cumulative removals as a proportion of the cumulative number of stems 
up to and including the /'th DBH class, rj is given by 

v = ftx + (fo +fcQ)ht {Dr^i)/(dr^)} 
/i is the number of the first non-zero DBH class with corresponding class lower 
limit of dlf j2 is the number of the last non-zero DBH class with corresponding class 
upper limit d2, and Dj is the mid-point of the /th DBH class. The value of Pj can be 

obtained by difference. The class removals can be obtained from the P/s by multiplying 
Pj by the cumulative number of stems up to and including the /th class and then 
calculating first differences. The above model satisfies both constraints mentioned above 
and it was fitted in GENSTAT with IRIS based on an assumed binomial distribution 
for the cumulative number of stems removed. The parameter estimates are given in 
Table 9. 

TABLE 9-Parameter estimates for thinning model (Eqn 17) 
P. = (l-Pn)exp(-exp(T\)} +Pn jx <j <j2 

= 0 J<JVJ>J2 

Parameter 

A 

Estimate 

1.4322 
0.7302 
0.0179 

= 2.4179 

Standard error 

0.0393 
0.0729 
0.0031 

APPLICATION OF THE MODELS 

To apply the above models to temporary inventory plot data so that forecasts of 
required forest statistics can be obtained, the following steps are required: 

(1) Initial values of the following stand variables are obtained at the measurement 
of the inventory plot: H, B, V, N, S, Sd, St, Pr, and d0. These variables are calculated 
after thinnings are removed if the measurement is taken at a thinning. These values 
are re-initialised only when a simulated treatment of the stand is applied. 

(2) Using the increment models for H [Eqn (5)] and B [Eqn (9) and (10)] fore­
cast these variables to the required age using initial values obtained in Step (1). If the 
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stand has not been thinned, calculate mortality using Eqn (11) otherwise assume no 
mortality, or apply an average mortality rate for thinned stands. 

(3) Using the forecast values of H and B obtained in Step (2) apply the increment 
model for V given by Eqn (12) for unthinned and Eqn (13) for thinned stands. Eqn 
(13) requires the initial values of H and B obtained in Step (1) as input as well as 
forecast values. 

(4) Predict the parameters of the Weibull DBH distribution using Eqn (15) for 
c using the values of B, H, and N obtained in Step (2) (i.e., Q obtained from B and 
N), recover 0 using Eqn (16) and d0 obtained in Step (1). The cdf form of the model, 
Eqn (14), can then be applied with class frequencies obtained by first-differences from 
the forecast cumulative frequencies. For a thinning, the stand table is constructed im­
mediately prior to thinning. A stand table for each of basal area and volume can be 
constructed by calculating these values at the upper and lower bounds of each DBH 
class (for volume use a single-tree volume equation), averaging these two boundary 
values for the class, and then multiplying the result by the proportion of stems in the 
class. Some scaling will then be necessary to ensure that the class values of B and V 
total to the values forecast above. 

(5) Simulation of a thinning is carried out either manually by the user or by the 
thinning algorithm. Both the DBH stand table and Q obtained in Step (4) as well as 
the proportion of total stems to be removed are the inputs. If row thinning is to be 
simulated, equal proportions of total removals are thinned from each DBH class. If 
thinning from below then the model given by Eqn (17) is used. For row thinning 
combined with thinning-from-below between outrows, the row thinnings are removed 
first and then Eqn (17) is used to thin between the outrows. Thinned basal area and 
volume by DBH class are obtained in the same way that before-thinning values were 
obtained in Step (4). The after-thinning stand table is obtained by removing thinnings 
from the before-thinning stand table. The standing, live, basal area and volume are 
re-calculated as initial values [Step (1)] for the next forecast period by accumulating 
the after-thinning DBH class basal areas and volumes. This allows Eqn (13) to take 
thinning into account, as mentioned in the section on the volume increment model. 
Likewise, do is re-calculated from the after-thinning stand table for use in the next 
forecast period. 

(6) The plot is "grown on" to the next age by repeating Steps (1) to (5). 

DISCUSSION AND CONCLUSIONS 
The Poisson-like variance function (A = 1) was chosen for the MDH, basal area, 

and volume increment models; however, the choice between X = 1 and A = 2 is not 
clear-cut. The standard deviations of Pearson residuals, standardised to have unit 
variance, for classes of predicted increment, are shown in Fig. 5. These standard 
deviations have been averaged across the three increment models. To present them on 
the same prediaed increment scale, the scale of the abscissa in Fig. 5 represents the 
ratio of the mean predicted increment for the class to the mean for the top class. These 
ratios, like the standard deviations, were averaged across the three models. This was 
done for brevity and because the trends in standard deviations were very similar for 
each model. 
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FIG. 5—Standard deviation of Pearson residuals for predicted increment classes. 

Setting A = 1 under-corrects for the variance trend of the standard residuals (A = 0) 
while A = 2 over-corrects (Fig. 5). This partly explains the trend of increasing <£> 
with age and site index seen in Table 7, since a similar trend in bias is also responsible 
for this trend in O . The value A = 1 was chosen here because it is conservative, lying 
between the extremes of 0 and 2. The value A = 2 is a more convenient form of the 
variance function since the standard error of forecasts can be quoted as a proportion 
(i.e., V<J>) of predicted increment. It appears that a value of A between 1 and 2 would 
be more appropriate. Further refining of the statistical methodology presented here 
could make use of recent work in extending the definition of the quasi-likelihood 
function (Nelder & Pregibon 1987) which allows X to be estimated along with other 
model parameters. 

The volume increment function, Eqn (13), can be expressed in terms of ratios. 
Since (3<2 is effectively 1.0, the model predicts the ratio of volumes at two ages as the 
product of the corresponding ratios for each of basal area and the power J3i of mean 
dominant height. The relative merits of the two forms of volume model require further 
investigation. 

A set of growth and yield models, involving increment models of mean dominant 
height, basal area, mortality, and volume and models of DBH distribution and thinning, 
have been constructed for application to intensively managed P. radiata plantations in 
Tasmania. These models, along with existing models of tree volume, stem taper, bark 
thickness, maximum basal area, and the tree total height/DBH relationship, allow the 
simulation of stands treated by thinning or pruning for any site and/or regime in 
Tasmania. The models are designed to be applied using temporary inventory plot data 
as the starting point in simulations. Because of the generality of the models the output 
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they produce in simulations can be considered only as base-line information so that 
extra information on regional, fertiliser, and irregular mortality effects may be required 
to improve the precision of forecasts. 
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APPENDIX 

The generalisation of the residual sum of squares for normally distributed, constant 
error variance models to the deviance for the exponential family of distributions was 
derived by Nelder & Wedderburn (1972). Subsequently, Wedderburn (1974) intro­
duced the quasi-deviance statistic (the term "deviance" is used for brevity) as a further 
generalisation of likelihood to quasi-likelihood where the distributional form of the 
data is unspecified and a mean/variance relationship, such as that given by Eqn (2) is 
all that is assumed. The deviance (or quasi-deviance) is derived from Wedderburn's 
(1974) quasi-likelihood as 

/

A 

^ [ ( J ^ ) / V < f i ) ] dfi 
7k 

where yk is the dependent variable, ftk is the predicted value from the model fA, V(.) 
is the variance function, n is the number of observations, and D(y,fxk) is the deviance 
for the model under consideration. 

The deviance function for the gamma-like variance function, given by Eqn (2 with 
A = 2, for a single observed/forecast pair is given by 

COfcA) = 2 [(yk-£k)/(£k-?k-i) - In {(yk-^k-i)/(Ak-^k-i)} } , y* > yk-i 

Similarly, the deviance function for the Poisson-like variance function, given by 
Eqn (2) with A = 1, is given by 

D(y*,fak) = 2 [(yk-^k-i)fc {(yk-^k-i)/(Ak~yk-i)} - (yk-£k)] , yk > yk-i 

The estimate of the dispersion parameter, <J>, used here was the mean deviance, so 
t h a t o = 2kD(yk,/ik)/tf. An approximate 100(l-a)% confidence interval for t i s 

<»-#)* /Xn-p(l-a) < 0 < (tH>)&/xl»(<x) 

where xVpQ-a) *s the lOO(l-a) percentage point of the chi square distribution 
with (n-p) degrees of freedom and p is the number of parameters estimated. 


