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ABSTRACT 
Site index is used as a measure of productivity for large plantation forests. Although 

site index had been calculated in less than half of the compartments in Kaingaroa Forest, 
data were fairly evenly spread. A Geographic Information System (GIS) was used to 
produce a contour map of site indices associated with compartment centre points. The 
limitations of estimation techniques within the GIS were highlighted by the difficulty of 
predicting values between contour lines. Instead, geostatistics, a statistical interpolation 
method, was adopted as it can estimate local values from data that varies spatially. 

The variogram for site index in Kaingaroa Forest was fitted by a linear model up to 
25 km. The parameters of this model were used in estimation (kriging) procedure. Values 
for 757 compartments were predicted, ranging from 18.8 to 34.3 m. The standard error 
ranged from 1.6 to 3.6 m, with a mean of 1.7 m. A jack-knifing procedure showed 
estimates to agree well with actual values. 

It was concluded that linking a GIS with geostatisties allowed more effective use to 
be made of the GIS. 

Keywords: site index; Geographic Information System; geostatistics. 

INTRODUCTION 
Kaingaroa Forest (Fig. 1), at 144 000 ha, is one of the largest planted forests in the 

Southern Hemisphere. To allow long-term planning of wood flows from the forest, its 
productivity must be known. One common index of forest productivity is the site index 
(SI[20])—the t 0 P height, measured in metres, that a stand of trees attains at age 20 years. 

A site index map constructed in the 1970s by New Zealand Forest Service staff has 
remained substantially unchanged since then. The pedigree of this map, the data contributing 
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FIG. 1-Locality map. 

to it, and the procedures used to derive the site indices are unknown (J.W.Shirley unpubl. 
data). A review of these site indices in early 1992 (T.M.Dale unpubl. data) indicated that 
some of them were not very reliable. This, together with the availability of many new data, 
prompted the call to update the site index map of Kaingaroa. 

An initial assessment of the new data showed that more than half of the 1643 compartments 
in the forest still had no associated site index. In order to avoid costly field measurements, 
a method was sought for efficiently estimating values of site index for those compartments. 
This paper describes our approach to producing a new and more accurate map of site index 
for the whole forest. The emphasis of the forest owner was to produce a workable, best 
estimate, site index map at a low cost. 

Several approaches to estimation are possible. Some simple options appealed to the forest 
owners and were considered, as described below. 

A straightforward technique for estimating missing values is to divide the forest into large 
but moderately uniform blocks and to use the block mean to approximate all missing site 
indices within each block. The map output from such an approach would show the forest 
divided into a few large blocks, each covering several compartments. The associated error 
of estimation would be the variance of the population. This method, however, does not take 
local trends and variations into account. Within-block variation can be large. For example, 
site indices in a Kaingaroa block can vary by 6 to 8 m over distances of a few kilometres. 

A Geographic Information System (GIS) can be used to produce a map of the compartments 
shaded in colour to match the associated site index values. The site indices were known to 
follow a gradual trend across the forest from north to south and this technique shows such 
a trend well. However, this is essentially a mapping exercise. Missing values estimated from 
this map will be approximations that are subjective and non-reproducible, and unreliable 
where the coverage of known values is irregular. 

Another technique suggested was to use a GIS or other software to contour the known site 
indices and to estimate unknown site indices from surrounding contours. The estimation 
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process was to be based on a combination of the values of the surrounding contours 
proportional to their distance from a missing site index. Although the technique has the 
potential to be biased and has no estimate of error (Webster & Oliver 1990), the approach 
was intuitively reasonable to the forest owners and so was considered. 

There is a large body of literature on interpolation (for example, Oliver & Webster 1990; 
Lam 1983). Techniques range from global approaches such as trend surface analysis, to local 
methods such as low order polynomial, and weighted moving averages. None of these 
methods, however, determines whether its assumption of spatial dependence in the data 
holds, nor do they provide any estimates of the errors of estimation (Oliver & Webster 1990). 
They are based on modelling a continuous spatial variable by mathematical functions. The 
desire to use a more realistic model to describe the spatial relations that lie behind a map such 
as the site index map led to the appraisal of geostatistics. 

Background to Geostatistics 
Geostatistics was developed initially within the mining industry by Matheron (Matheran 

1965) and Krige (1966) among others, and in recent years the technique has been applied in 
other disciplines, notably soil science (Webster & Oliver 1990) and in one recent instance 
in forestry (Samra et al. 1989). The concept underlying geostatistics is fairly simple and is 
described below. For more details, see Oliver & Webster (1990) and Webster & Oliver 
(1990). 

Most natural properties vary continuously. Although from place to place the variation 
may be quite erratic, values close together in space are more likely to be alike than those 
further apart, i.e., they depend on one another in a statistical sense. Geostatistics exploits this 
autocorrelation and uses it in the estimation by assigning greater weights to data closest to 
the point being estimated. 

The procedure involves two steps, the first being to describe the autocorrelation of the 
data. This is done using regionalised variable theory which uses a stochastic approach to 
account for the spatial dependence of natural properties. For simple applications this theory 
assumes a constant local mean and a stationary variance of the differences between places 
separated by a given distance and direction. This variance of the differences, usually denoted 
y, the semi-variance, is half the expected squared difference between two values. Formally, 

var[z(x)-z(x + h)] =E[{z(x),-z(x + h)}2] =2y(h) (1) 
where z(x) is the value of a property z at position x, a vector, and z(x+h) is the value at (x+h). 
The semi-variance depends on the separation h, the lag, in both distance and direction, not 
on the actual positions of the data. 

The function which relates y to h is the variogram. The equation for calculating it from 
sample data is: 

Y(h)= —!— lM^{z(Xi)-z(xi + h)}2 (2) 
2M(h) <'=i 

where M(h) is the total number of pairs of points separated by the lag h. By changing h an 
ordered set of values is obtained, which is termed the experimental variogram, and the shape 
of the plot of this variogram describes the degree of autocorrelation of the variable. In some 
instances ymay depend not only on the separation distance, but also on the direction of the 
pairs of points. 
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A mathematical model is fitted to the experimental variogram and from it the model 
parameters for the variogram are estimated. Various functions are acceptable, e.g., spherical, 
linear, bounded linear, exponential, and Gaussian (McBratney & Webster 1986). They fall 
into two broad groups: the unbounded and bounded models. Normally, when fitting the 
function a non-linear regression approach with weights in proportion to the number of paired 
comparisons contributing to yis recommended (Oliver & Webster 1991). The variogram 
parameters derived for bounded models are: 

• the upper bound known as the sill 

• the intercept on the ordinate (Co)—an intercept greater than zero, known as the nugget 
variance, signifies that variation is present at a lag distance less than the minimum lag 
measured 

• the range of the autocorrelation (a), i.e., the lag distance above which the samples are 
independent of each other 

• the slope of the function. 

The parameters of the model fitted are then used in the second stage, the estimation itself 
(kriging). Kriging estimates by local weighted averaging: 

z(x0) = lnyiZ(Xi) (3) 
1=1 

where Z(XQ) is the estimate at XQ, and V; are weights assigned to the surrounding known data 
based on their distance and possibly direction from XQ. In order for the estimate to be unbiased 
the weights must sum to 1 and, subject to this, they are chosen to minimise the estimation 
variance. If the data are autocorrelated, the weights for known values close to XQ will be larger 
than those further away. In addition, clustered data will have correspondingly smaller 
individual weights and samples shielded from XQ by closer data will also have smaller 
weights (Oliver & Webster 1990). If the data are not autocorrelated, the weights of all data 
used in the estimation will be the same irrespective of distance from XQ. AS the weights must 
sum to 1, the weights will be equal to 1/n where n is the number of data involved in the 
estimation, and so in this case: 

z(x0) = - z(x2) + - z(x2) ... + - z(xn) (4) 
n n n 

One of the advantages of kriging over traditional methods of interpolation is that the 
estimates are unbiased and are of minimum and known variance. Since the estimation 
variances can be calculated and mapped, the confidence that can be placed in the estimates 
can be determined. 

METHODS 
Site Index 

To compute a site index, the mean top height of selected trees on a site and the age of those 
trees need to be known. Height models have been developed for several areas in New Zealand 
as part of the Pinus radiata D.Don growth modelling research programme. The Pumice 
Plateau growth model was used for Kaingaroa Forest (A.G.Dunningham & M.E.Lawrence 
unpubl. data). The model uses top height at a given age to predict the height at age 20, the 
site index. Four sources of estimates of top height at known ages were used for Kaingaroa 
Forest. 
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• Permanent sample plot (PSP) system (J.D.Dunlop unpubl. data). 
This database contains nearly 16 000 measurements from many P. radiata plots, of 
which about 1300 had height/age pairs between ages 10 and 50 years. For each 
measurement pair the site index was calculated. All values of site index for a plot were 
averaged. 

• Pre-harvest and mid-rotation inventory plots. 
Height/age pairs were available for about 5000 temporary plots measured between the 
ages of 20 and 50 years since 1984. Site index was calculated for each measurement 
pair. 

• Age 13 inventory plots. 
Height/age pairs from 358 stands (5600 temporary plots) were measured during 1974 
to 1978, and were used to estimate site index for each stand (a number of stands make 
up a compartment). 

• Extraction thinning quality control measurements (M.W.Deadman & C.Pilaar unpubl 
data). 

Height/age pairs were available from thinning quality control measurements in 391 
stands between the ages of 13 and 22 years. 

Although there were about 11 000 site index estimates available, there were 899 
compartments out of the total of 1643 without any associated site index. The limited 
availability of digital spatial data, as discussed below, restricted the estimation to the 
compartment level rather than the more accurate individual plot level. For those compartments 
with site index values, compartment means were calculated. This was done by first averaging 
multiple measurements within one of the above sources—for example, by averaging the site 
indices of several age 13 inventory plots in a compartment. Then, if there was more than one 
source of site index for a compartment, these indices were averaged too (Shirley unpubl. 
data). 

GIS Methods 

To use a GIS, the spatial data need to be digitised and the attributes appended. For this 
study, the 1643 forest compartment boundaries were available in digital format, with each 
compartment uniquely identified by forest code and compartment number. This was the most 
detailed level of digital spatial information available. The data were imported into the GIS 
(ARC/INFO). The compartment identifiers were the links to other data—in this exercise the 
identifiers were used to store the 744 known compartment site indices into the GIS. 

The GIS was used to produce colour shading plots. Site indices were grouped into 
intervals of 2 m and coloured from red (low value), through orange, yellow, etc., to dark blue 
(high value). The resulting map showed some potential invalid site indices—for example, 
a value seemingly very different from others in the same area. With no more information to 
go on than the feeling that a value was not correct, it was decided not to drop any of the known 
values until they could be investigated further. 

There were a number of influences on the data other than geographical ones. These 
included: 
• The history of site preparation and silviculture; 
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• The number of rotations on a compartment—parts of the forest are under second or even 
third rotation, with the more recent plantings being genetically improved trees; 

• The values themselves—they were from many sources and had been collected over many 
years. 

The first two factors created valid outliers while the last one increased the likelihood of 
errors. However, given that it was sufficient for this project to produce a workable, best 
estimate, site index map at a low cost, it was considered acceptable to use the data as they 
were. 

The GIS was also used to contour the site indices. ARC/INFO uses a TIN (triangulated 
irregular network, ESRI1989) algorithm for contouring. No estimation of unknown values 
was made from the contour maps as it would have been prone to errors and impractical for 
the amount of estimation required. 

Finally, the GIS was used as a link between the site index data and the geostatistics 
method. Site indices were stored by compartment, while geostatistics requires the co­
ordinates of the compartment centres and the associated values of site index. The GIS was 
used to output a data set of site indices with the centre point co-ordinates of their 
compartments, as well as the co-ordinates of the centre points of the 899 compartments for 
which site index estimates were required. The GIS was also used to find the average 
compartment area for the forest. With these data the geostatistics could be run. The results 
of the geostatistics method, i.e., the estimated site indices and their co-ordinates, were 
entered into the GIS again. The GIS was used with these co-ordinates to assign values of site 
index to their appropriate compartments. 

Geostatistics Methods 
The known site indices, as exported from the GIS, were initially analysed for normality 

using the SAS statistics package (SAS Institute 1985). The summarised data were: 
Mean 29.5 
Standard Deviation 3.31 
Skew -0.54 
Kurtosis 0.48 

Analysis of the measured site indices showed them to be normally distributed about the 
mean, and therefore no transformation was required prior to construction of the variograms. 

Variograms were constructed using the program "Semivar" (Robertson 1987), with lag 
distances of 1 km intervals. This was followed by an assessment of anisotropy (i.e., 
directional rather than distance-related variation). For this assessment, variograms were 
computed and plotted in four directions (0°, 45°, 90°, and 135° with a tolerance of 10° either 
side of those directions). 

Models were fitted to the isotropic variogram data, using a non-linear weighted least 
squares approach with the SAS package (SAS Institute 1985). Weights were assigned 
according to the number of points contributing to the estimate of variance. Only acceptable 
model types were evaluated (spherical, exponential, bounded linear, unbounded linear, and 
Gaussian—McBratney & Webster 1986). 

Site indices for compartments with no measurements were estimated using the program 
"Punctual" (Robertson 1987), with the variogram given above. Site indices were estimated 
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at the compartment centre co-ordinates calculated within the GIS. Estimation variances were 
also calculated and converted to standard errors (^estimation variance), and are presented as 
such. 

The kriging was validated using a jack-knifing technique, which re-estimated the known 
site indices. This was done for all 744 data points, by dropping a single known value and 
using the remaining data to estimate the dropped value, until all site indices had been re-
estimated. Population statistics for the known and estimated data were then compared to 
determine the efficiency of kriging. 

The resulting sets of co-ordinates, actual and estimated site index, and the standard errors 
of the estimates for each compartment were transferred to the GIS as ASCII files. 

RESULTS AND DISCUSSION 
GIS Analysis 

A sample contour map with compartment boundaries and known site index values is 
shown in Fig. 2. It gives an overall picture of variation in site index, but has shortcomings. 
The site index values are compartment means, not point values as assumed by the contouring 
algorithm. Most of the computed contour lines run through parts of compartments, making 
the actual site index value unclear. There are some practical difficulties with estimating site 

FIG. 2-Example of a contour map of site index (m) for a block of compartments in Kaingaroa Forest. 
Compartment boundaries are shown, plus measured values of site index where available. 
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index from contours. Assuming a straight line gradient between adjacent contour lines would 
be only an approximation. If surface trends are considered, estimating missing values 
becomes complex. In addition, if two adjacent contour lines have the same value it can be 
difficult to estimate the height or depth of the "hill" or "valley" between them. Currently this 
estimation technique would be manual, with any distances required having to be read off the 
map. 

A map produced by graduated shading of compartments based on their site index value 
(e.g., Fig. 3) shows the full area of the forest covered by each value, removing the uncertainty 
caused by contours bisecting compartments. Although this type of map gives less insight into 
values for unmeasured compartments than does the contour plot, it is useful for clearly 
highlighting compartments which have values of site index quite different to those surrounding 
them. If a single compartment stands out, the value may be incorrect and should be 
investigated. If a group of compartments is highlighted, site factors or the history of the area 
may indicate why this is so. For example, a group of compartments in northern Kaingaroa 
Forest had unexpectedly small site indices. Investigation of stand records suggested that the 
stands may have been subjected to an unusually intense pre-establishment burn (the previous 
crop was P. ponderosa P. et C.Lawson which is known to have high slash). This may have 
contributed to the lower-than-expected site indices in the subsequent crop. 

It seems that, for our purposes, graduated-shading compartment maps based on the results 
of an estimation technique would be the preferred option for both visual assessment of site 
index variation and production planning. 
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FIG. 3-Example of graduated shading map of site index (m) for a block of compartments in 

Kaingaroa Forest. 
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Geostatistical Analysis 
Variogram analysis 

The variogram was constructed up to a maximum lag distance of 25 km, taking into 
consideration the approximate width of the forest (Fig. 4). 
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FIG. 4-Isotropic variogram plus variograms constructed in four directions to evaluate any 

directional variation in spatial dependence of site index. 

The variogram was assessed for anisotropy. The plotted variograms for the four directions 
0°, 45°, 90°, and 135° are shown in Fig. 4 with the isotropic variogram. As the variograms 
were much the same in all directions, it was considered appropriate to use the isotropic 
variogram for the kriging to capture the benefits of unbiased estimates with minimum error. 

A linear model was fitted to the variogram. The model is presented in Equation 5: 

y(h) = 2.482 + 0.21 h (5) 
The positive intercept signifies the degree of variation in site index present at a smaller 

scale than the 1 km minimum lag distance, and in this case would represent the within-
compartment variation in site index. 

Kriging results 
Estimates were produced for missing site indices where the surrounding data were dense 

enough to ensure 16 known values within a radius of 25 km. The standard errors associated 
with the estimates were also calculated. The estimated site indices ranged from 18.1 to 
34.2 m, with a mean of 28.1 m. The standard errors ranged from 1.6 to 3.6 m, with a mean 

a 135 degrees 

A 90 degrees 
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of 1.68 m. The majority of these standard errors were half the value of 3.3 m that would apply 
if data independence was assumed and the error of the estimate was the standard error of the 
total population. The standard errors increased with distance from known site indices. For 
example, compare points A and B in Fig. 5 with point C. The values of the standard error are 
smallest in A and B (1.62 m), where the compartment is bordered by compartments with 
known site index, while point C has a standard error of 1.70 m and surrounding known values 
are further away. Over most of the forest where values were estimated the standard error was 
less than the mean of 1.68 m. This was due to the fairly even spread of data points through 
the forest. Higher estimation errors occur in outlying areas of the forest, and where data are 
sparse. 

FIG. 5-Map of estimates of site index of those compartments without measured values for a 
block of compartments in Kaingaroa Forest. Errors associated with the estimates are 
also shown. Compartments with known values are shaded. 

Evaluation of the Kriging Procedure 

The results of the jack-knife analysis, i.e., the known versus estimated site indices, were 
plotted in Fig. 6. The correlation between actual values and estimates yielded an r2 of 0.6249, 
p=0.0001. The average difference between known and estimated site index was 0.005 m 
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(Table 1). The largest difference was 9.4 m, but the vast majority of the differences were 
much smaller. The standard error associated with the estimates was 1.9 m. Kriging smooths 
surfaces and, as would be expected, the technique over-estimated for compartments with a 
lower site index and under-estimated for compartments with higher site index values. 
However, the estimation procedure is unbiased overall and, again as expected, the mean 
difference was very close to zero. Several compartments whose known values appeared to 
be markedly different to values recorded in surrounding compartments will be field checked 
and their site index values corrected if necessary. After this, the map will be updated. 

Measured site index (m) 

FIG. 6-Comparison of known site index with estimates made using geostatistics (jack-knifing 
procedure). 

TABLE 1-Comparison of the measured site index and values estimated using geostatistics for the same 
compartments (jack-knifing). 

Mean 
Std error 
Minimum 
Maximum 

Measured site index 
(m) 

29.5 
3.3 

16.1 
37.7 

Estimated site index 
(m) 

29.2 
2.76 

18.2 
34.4 

Difference 
(m) 

-0.005 
1.91 

-7.27 
9.40 

As expected, standard deviation increased with distance from known values. This was 
clearly illustrated (Fig. 7) by the group of compartments with estimated site index values of 
about 20 m but with increasing values of standard error associated with the estimates. The 
compartments involved comprise a long thin "spit" of forest extending from the main body 
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FIG. 7-Estimated values of site index produced by geostatistical analysis versus the standard 
errors associated with the estimates. 

of the forest. The standard error increased with increasing distance from compartments of 
known site index in the main body of the forest. There were no measured values of site index 
on the spit which would have helped reduce the error. 

The final stage of the exercise was to produce a full map of the forest, utilising 
compartment boundaries and both measured and estimated values for site index. This output 
from ARC/INFO is shown in Fig. 8. A colour spectrum from red (lowest site index), through 
orange, yellow, etc., to dark blue (highest site index) was used, with intervals of 2 m between 
categories. This output allows rapid visual assessments of growth patterns within the forest, 
and interrogation of the GIS database gives quick access to data of compartments of interest. 
The presentation of the map by either colour or gradational shading of compartments was 
preferred to contours of site index for three reasons. The colouring or shading of compartments 
was easier to see, contours bisected compartments in the map and this was confusing as data 
were based on compartment means, and thirdly, as there were values associated with all 
compartments on the GIS database, estimation of site index values from contours was no 
longer necessary. 

CONCLUSIONS 

Combining a GIS with statistical techniques allowed us to update the map of site index 
distribution over Kaingaroa Forest effectively. Geostatistical techniques were successfully 
used to produce estimates of site index for compartments without measured values, and these 
estimates were unbiased with minimum variance. Producing a colour-shaded map of site 
index for the forest, in conjunction with readily accessible data on the GIS database was an 
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FIG. 8-Map of Kaingaroa Forest produced using both measured and estimated values. 

effective way of presenting growth data for the forest. Additionally, digital storage of 
information will allow rapid—even automated—updating of the map in future as new data 
become available. 
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