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ABSTRACT 
A tree volume model based on Schumacher's form and a compatible, 

segmented, and variable-form stem taper model were found to be the best 
models for predicting volume, volume and diameter to a given height, and 
volume to a top diameter limit for Pinus radiata D. Don sample trees. 
Schumacher's tree volume model was modified by incorporating DBH to total 
height ratio (R) and mean annual DBH increment (DBH/age) as extra predictor 
variables. The variable-form stem taper model incorporated DBH, R, and 
DBH/age as extra predictor variables to the average-form model. The model 
predicts increasing butt swell with increasing DBH and increasing upper-stem 
taper with increasing DBH/age. Compatibility enforced algebraically gave more 
precise and less biased predictions of volume in the butt section compared to the 
empirically-compatible version of the taper model. The model suffered from 
bias when predicting diameter near the tip but bias was not a problem in volume 
prediction. 

A random coefficients regression procedure was used to generalise the taper 
model from an average-form to a variable-form model. 

Keywords: taper; tree volume; variable-form; random coefficients regression; 
Pinus radiata. 

INTRODUCTION 

Models to predict tree volume, merchantable volume defined to either a given height 
or diameter limit, and diameter to a given height are required for inventory and 
growth and yield simulators. Compatible tree volume and stem taper models form a 
useful class of models to predict these quantities (Demaerschalk 1973; Goulding & 
Murray 1975; Van Deusen et al 1982; Byrne & Reed 1986; McGlure & Czaplewski 
1986). The tree volume model in general predicts tree volume from a simple function 
of DBH and total height while the taper model predicts stem diameter given height, 
total height, and either DBH or estimated tree volume (i.e., from the tree volume 
model). Volumes to a given height or diameter limit are obtained by integrating the 
taper model. Compatibility means that on integration of the taper model from ground 
to tip the volume produced is the same as that produced from the tree volume model. 
Compatibility can be enforced algebraically in a number of ways: by recovering 
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parameter values of the tree volume model using the estimated parameters from the 
fit of the taper model (Byrne & Reed 1986), by estimating any "free" parameters of 
the taper model given estimated parameters of a particular form of tree volume model 
(Demaerschalk 1973; Van Deusen et al. 1982), or by constraining the parameters of, 
and incorporating estimated tree volume in, the taper model (Goulding & Murray 
1975; McClure & Czaplewski 1986). 

In another development, segmented taper models (which use separate equations 
:o describe each of several segments of the tree bole and then join or spline these 
segments together at points defined by join-point parameters) were used by Max & 
Burkhart (1976) and Cao et al. (1980). Cao's model, which is a segmented version of 
Goulding & Murray's compatible fifth-degree polynomial taper model, was not con
strained to be compatible but empirically they found it to be very close to compatible 
with tree volume estimated from the combined variable model. Byrne & Reed (1986) 
developed a version of Cao's segmented model which is algebraically compatible with 
the constant form-factor tree volume model. Compatibility was enforced by incorporating 
a form factor parameter in. Cao's model so that the tree volume model's single parameter 
estimate was obtained in the fit of the taper model. McClure & Czaplewski (1986) 
introduced a constraint on the parameters of Cao's model to make it algebraically 
compatible with any form of tree volume model. 

In a recent development Newberry & Burkhart (1986) used a variable-form taper 
model based on Ormerod's (1973) two-parameter taper model for the main stem of 
Pinus taeda L. where main stem was defined as the bole segment below the crown and 
above the point affected by butt swell. Although we are concerned here only with 
whole-tree models, their study is relevant because the model developed was variable-
form. They followed Gray's definition of form as the characteristic shape of the solid 
describing the bole, which generalises to more than one solid for segmented models, 
while taper is defined as the rate of narrowing in diameter in relationship to the 
increase in height for a solid of given form. By variable form it is meant that a base 
model is defined which, when fitted to a sample of trees, predicts the taper for the 
tree of average form. The variable-form model allows the parameters of the base model 
to vary as functions of tree and/or stand variables. A random coefficients, also called 
varying-parameter (Biging 1985), regression procedure was used to construct the above 
model. 

The objective of this study was to develop tree volume and stem taper models to 
predict under-bark (ub) volumes and diameters for any site in Tasmania and/or any 
particular management practice such as planting spacing, thinning, and pruning. The 
direct effects of management practices and their indirect effect, via stand and tree 
variables, on tree volume and stem taper were to be tested and quantified in the model 
where the necessary data were available and where these effects were statistically signifi
cant. Regional differences were to be incorporated indirectly through their effect on 
stand and tree variables. 

To achieve this objective the usefulness of features of the above taper models was 
tested. Attention was restricted to Cao's segmented model as the base model since it 
has been found to be a good multi-purpose taper model (Cao et al. 1980; Byrne & 
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Reed 1986). Gordon (1983) and Lowell (1986) have both attempted to improve 
Goulding & Murray's (1985) polynomial taper model; however, Cao's model was 
preferred here since its segmented nature facilitates the development of a variable-form 
model because the parameters have simple interpretations. This allows prior notions 
of how form varies to be incorporated in the modelling process. Also, Goulding Sc 
Murray's polynomial taper function requires a solution to a fifth-degree polynomial 
in order to obtain volume to a merchantable diameter limit, whereas this volume is 
much simpler to calculate using Cao's model since only the solution of a quadratic is 
required. 

The usefulness of including in the tree volume model tree variables other than 
DBH and total height as well as stand variables was also examined. 

A two-stage, random coefficients, modelling procedure similar to that used by 
Newberry & Burkhart (1986) was used to construct the variable-form taper model. 

Notation 
bx •=. tree volume regression coefficients 
OL\> /?i, /3jj — stem taper regression coefficients 
D or DBH = diameter over-bark (ob) at breast height (cm) 
D u = diameter (ub) at breast height (cm) 
H = total height (m) 
h — -height above ground to top diameter d 
d = top diameter (ub) to height h (cm) 
K = 7r/[4(1002)] constant to convert DBH2 to basal area (m2) 
V = volume to tip (ub) (m3) 
v = volume to height h (ub) (m3) 
z = {H-h)/H relative height from tip to top diameter 
R — ratio D/H (cm/m) 
T = age (years) 
MD = mean annual diameter increment D/T (cm/year) 
y = d2KH/V - 2z the dependent variable for stem taper regressions 

where V is the estimate from the tree volume model. 

DATA 

The data used in this study consisted of 2224 sample trees of which 939 were 
trees with under-bark diameters measured directly at each measurement point on the 
stem by removing the bark. For nine out of 10 of the remaining sample trees, over-bark 
diameters only were measured at every point and under-bark diameters measured at 
0.6 m, breast height, and (in most) at a fixed point at height 6.1 m. For the one in 10 
tree, which was randomly selected, the bark thickness at each measurement point on 
the stem was obtained using a, bark gauge. To obtain under-bark diameters where 
they were not measured directly predictive equations were used. These equations were 
developed using the random subsample data and a multiple linear regression of double 
bark thickness (DBT) at measurement height on DET at breast height and 6.1m as 
well as diameter over bark at breast height and measurement height, total tree height, 
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and age. Tests of accuracy showed that the volumes obtained by this method demon
strated negligible bias and were within 2% of those obtained by actually measuring 
the under-bark diameters (P. R. Lawrence, "Metric volume tables for Pinus radiata*, 
Forestry Commission report). The Smalian formula was used to calculate the under-
bark volume between the points of measurement. Volume between ground and the 
first measurement point at 0.6 m was obtained by linearly extrapolating the under-bark 
diameter to the ground using diameter at 0.6 m and 1.3 m. 

Information available for the sample trees is summarised in Table 1. Information 
on thinning is restricted to the number of times stands from which the sample trees 
were drawn had been thinned, which ranged from 0 to 6, with 54% of the trees from 
unthinned stands and a further 42% from stands thinned at most twice. The thinnings 
were usually frequent and at later ages with light removal of growing stock corres
ponding to pre-1973 (i.e., "old") regimes in Tasmania. All the sample trees were 
measured before 1973 after which time new intensive management regimes were 
introduced (Neilsen & Davis 1985). Square planting spacings of 1.83 m and 2.44 m 
accounted for 19% and 65% respectively of the trees for which spacing was known 
(i.e., there were 91 missing values). 

TABLE 1—Summary of sample tree data 

Tree/stand 
variable 

DBH (D) 
Height (tf) 
Double bark thickness (cm) 
Tree volume (V) 
Age(T) 
Site Index* (m) 
Mean dominant height (m) 
Pruned heightf (m) 
No. of measurement points 

Mean 

27.8 
21.8 
3.2 
0.66 

17.0 
30.3 
24.0 
4.9 

11.2 

Minimum 

9.1 
8.5 
0.4 
0.03 
8.0 

16.4 
10.4 
1.2 
5 

Maximum 

78.0 
50.0 
12.2 
6.78 

53.0 
39.4 
46.6 
9.9 

19 

No. of 
missing 
values 

0 
0 
0 
0 
0 

358 
237 
744 

0 

* Mean dominant height at age 20. 
t Pruned trees; 485 trees were unpruned. 

BASE MODELS 

The models are described below in their base form by which it is meant that only 
basic tree variables of V, D, Du, H, and within-tree variables d, h, and z are used as 
predictor variables (i.e., V in the stem taper model). In the stem taper model the 
base model could also be called the first-stage (fs) model since it is the model fitted 
individually to each sample tree in the first stage of the modelling procedure. Generalisa
tion of the models to include other tree, tree-level (i.e., combinations of tree and stand 
variables), and stand variables is left to the Results section. 

Tree Volume Model 
Two base models were considered here. Firstly, the simple combined variable model 

recommended by Burkhart (1977) gives: 
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V = bx + b2DuH (1) 

The constant form factor model is equivalent to Eqn (1) with b\ set to zero (i.e., 
fitted through the origin). 

Secondly, Schumacher's model was tried where 

V = boD^H* (2) 

Stem Taper Model 

The model used here was given by Cao et al. (1980) and is a segmented version of 
Goulding & Murray's (1975) compatible taper equation based on a fifth-degree poly
nomial in z. By using three segments, Cao's model requires five parameters to be 
estimated so that the model is given by: 

dHz)KH/V -2z = Ptftf-Tz) + jSate-aO2/! + /3s(z-ct2)% (3) 

where Zi = 1 for z > a{ i = 1,2 
= 0 z < <xx. 

The linear parameters to be estimated are the jSi while «i and a2 are nonlinear, 
join-point parameters which, combined with the indicator variables Ii} separate the 
segments of the model on the relative height axis. Proceeding from the tip (z = 0) 
the first component on the right-hand side of Eqn (3) contributes to all segments, for 
a2 > OL\ the second component to the middle and butt segments, and the third com
ponent contributes only to the butt segment. When a2 < a± the roles of the second 
and third components are reversed. This model allows three basic shapes in the d?(z) 
and z relationship considering KH/V as a scaling factor. In application, only an estimate 
of V, V, is available for use on the left-hand side of Eqn (3) whereas for the fit of 
Eqn (3) either V or V can be used, V obtained from the tree volume equation. However, 
for the following V will be used so that the precision of predictions of v, h, or d is 
that expected in application. 

McClure & Czaplewski (1986) showed how compatibility can be enforced by con
straining the parameters of Eqn (3) so that 

Pa/ft = - t ( a 2 - D / ( a i - D ] 3 (4) 
The constraint given by Eqn (4) was incorporated in Eqn (3) here, as was done by 
McClure & Czaplewski, by expressing 0 3 in terms of 02, <*i> and a2 and substituting 
the result for 0 3 in Eqn (3). 

Volume to height h can be recovered by integration of Eqn (3) with respect to z. 
Volume to under-bark diameter d can be obtained by first calculating the height to 
diameter d using Eqn (3) and then integrating Eqn (3) to this height. The formulae for 
calculating height and volume to a given diameter are given by McClure & Czaplewski 
(1986). 

The constraint that d=0 when h = H is implied in Eqn (3). Unfortunately it 
does not appear possible to constrain d to equal Du when h =• 1.3 m with an equation 
of the form of (3). Cao et al (1980) did not impose the constraint given by Eqn (4) 
but allowed all five parameters to vary freely. They relied on the relationship between 
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the estimates of parameters to make the model "empirically" compatible with predicted 
tree volume. In four examples that they studied vn/V, where t>H is v predicted at 
h = H, was 0.9896, 0.9943, 0.9942, and 0.9959. This empirical compatibility is the 
result of the least squares fit which attempts to predict stem taper as closely as possible 
so that on integration vH closely approximates V. However, by using V in Eqn (3) 
and the constraint given by Eqn (4) then compatibility is enforced algebraically with 
vn/V = 1 for any form of tree volume model. Some loss of predictive ability for y, 
where y = d2KH/V - 2z, and thus d is always incurred by constraining the parameters 
as in Eqn (4) and it must be decided if this loss is offset by the advantages of com
patibility. This is discussed in the Results section. 

Note that at this stage Model (3) is an average-form model since given V, H, and Du 

(i.e., since V is a function of Dn) then d depends only on z. Investigation of a variable-
form model can proceed by allowing the parameters in Eqn (3) to vary by tree. 
Newberry & Burkhart (1986) used such an approach using as base model Ormerod's 
taper model involving a form and a taper parameter. 

STATISTICAL METHODOLOGY 

The estimation of, and significance tests for parameters in the tree volume models 
are relatively straightforward. Model (1) is linear (in the parameters) and the parameters 
of Model (2) can be rearranged as follows: 

V = exp(b0 + bxlnDu + b2lnH) (5) 

where b0z=z lnb0 

If logarithms are taken on both sides of Eqn (5) the resulting model is linear. The 
logarithmic transformation also helps to stabilise the variance of V since the conditional 
variance of V, Var(V\D,H), is well known to increase with V, E(V\D,H) (i.e., the 
expected value of V) and D2H. The method used here to account for non-constant 
conditional variance was to assume the following variance function (i.e., variance 
functionally related to the expected value) 

Var(V\ x) = O /x2 (6) 

where 
/JL = E(V\ x), x is a vector of prediction variables such as D, H, R, and O is a 

dispersion parameter. 

The parameters in Models (1) and (5) can be fitted using iterative!/- reweighted 
least squares using the variance function (6) and the algorithm of Nelder & Wedderburn 
(1972) which is equivalent to assuming a gamma distribution for V. The theory behind 
this methodology is based on quasi-likelihood which uses a statistic called the deviance, 
which is the maximum likelihood (ML) generalisation of the residual sum of squares, 
to test the significance of adding or subtracting terms from the model (McCullagh & 
Nelder 1983). The advantage of this method is that no bias is incurred in predicting 
V whereas bias is incurred when re-transforming to the original scale of volume after 
using IriV as the dependent variable (Flewelling & Pienaar 1981). 
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For the construction of the stem taper model the dependent variable used in 
regressions was y where in the calculation of y, V is the predicted volume from the 
final form of the tree volume model. Graphical inspection of residuals indicated no 
heterogeneity of variance so no weighting of regressions was required. 

Construction of a variable-form taper model used a two-stage, random coefficients 
regression procedure whereby in the first stage the base model (3) was fitted separately 
to each tree and the resulting parameter estimates considered, in the second stage, as 
a set of five, correlated random variables with expected value given by corresponding 
second-stage (ss) submodels. Each of these ss submodels may incorporate tree, tree-level, 
and stand variables (called ss covariates for the following). Such two-stage modelling 
procedures are common in forestry applications with previous work by Ferguson & 
Leech (1978), Davis & West (1981), West et al (1984), and Newberry & Burkhart 
(1986) being most relevant to the discussion here. These authors used a generalised 
least squares (gls) procedure to estimate the ss parameters. They also compared gls 
to ordinary least squares (ols) estimation. Davis Sc West (1981) and Newberry & 
Burkhart (1986) concluded that the gls solution is not entirely satisfactory or worthwhile 
given the effort required to obtain it. 

An alternative two-stage regression approach to that used by the above authors 
and described by Candy (1988) was used here. This approach uses a sequential sub
model identification procedure combined with ols estimation. 

RESULTS AND DISCUSSION 

Tree Volume Model 

The fit of Models (1) and (5) is given in Table 2. Examination of residuals revealed 
a trend with D for Model (1). The residuals were negatively biased for D approxi
mately 40 cm and greater. This trend was more severe when the constant form factor 
model was fitted. There was no such trend in the residuals from Eqn (5). Pearson 
residuals (McCullagh & Nelder 1983) indicated that the variance function (6) was 
appropriate. The results for Eqn (5) indicated that Schumacher's equation was the 
best form of the model to develop further. Warner (1988) also found Schumacher's 
model to be the best of those tested for P. radiata in northern Tasmania. 

TABLE 2—Fit statistics for tree volume models 
Model No. of Residual Nested Stali S.E. (%)(V)§ 

parameters deviance* modelf 

Combined variable (1) CV 2 18̂ 21 CF 857̂ J <U 
Constant form factor (1) CF 1 25.24 10.7 
Schumachers (2) S 3 16.32 8.6 
S plus R, MD (7) 5 15.40 S 133^ 8.3 

* Maximum likelihood equivalent of the residual sum of squares which gives an estimate of <I> as the residual 
deviance divided by residual degrees of freedom (i.e., 2224 - number parameters). 

t Model involving a subset of parameters. 
$ Statistic to determine if the change in residual deviance is due to chance calculated as the absolute value of this 

change divided by <P and compared with a chi-square with degrees of freedom equal to the absolute value of the 
difference in number of parameters. 

§ Percentage variation of V about V given by 100 w . 
II Probability <0.0001. 
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After examination of residual plots, using InV-lnV as residuals, against each 
covariate the final model involved R and MD as follows, with parameter estimates and 
their standard errors given in Table 3 and fit statistics given in Table 2. 

V = explbo + bMDu) + b2ln(H) + bzln(R) + bJn(MD)} (7) 

The percentage standard error (i.e., percentage of predicted values) of predicted 
tree volume (about the fitted regression) given by 100V <J>, where O *s t n e residual 
mean deviance (i.e., ML equivalent of the residual mean square), was 8.3%. The 
percentage standard error was less for the under-bark (6.6%) than for the over-bark 
sample trees (9.4%). The mean percentage bias calculated as the mean of 100(F-F)/K 
was -0.002% with a value of 2.2% for the under-bark and -1.6% for the over-bark 
sample trees. 

The above models were fitted using GENSTAT (Numerical Algorithms Group 
1983). 

TABLE 3-Pararneter estimates for Models (7) and (9) (standard errors in parentheses) 

Model 

Tree volume 

Stem taper 

P,. 
*• 

-9.8766 
(0.0152) 

-0.1821 
(0.0311) 

P« 

1.7612 
(0.0632) 

0.2731 
(0.0377) 

P12 
b2 

1.1250 
(0.0609) 

0.1844 
(0.0208) 

Parameter 

PH 
* 3 

0.1272 
(0.0610) 

-0.0653 
(0.0350) 

P31 

-0.1067 
(0.0099) 

0.8136 
-

a i 

0.6511 
(0.0408) 

a 2 

0.8495 
(0.0137) 

Stem Taper Model 

The first-stage analysis was carried out by fitting Model (3) to each sample tree 
allowing all five parameters to vary freely. The pooled residuals in diameter (d-d) were 
then graphed against z and a trend of negative bias increasing from approximately 
z = 0.2 to 0.0 (i.e., the tip) was observed. Goulding & Murray (1975) and Lowell 
(1986) observed a similar trend for their average-form model. In Model (3) it is the 
parabolic shape of Eqn (3), in terms of h, near the tip which over-estimates the actual 
more conical tree taper. Since it is not possible to retain this model's basic form while 
at the same time incorporating a conical tip segment it was considered that it was 
reasonable to persevere with Model (3) and to examine the effect of the above bias 
once the final model was fitted. 

Second-stage Analysis 

Graphical examination of the fs parameter estimates was carried out at this stage. 
In the join-point parameters it was found that some estimates of either a± or a2 were 
outside the [0,1} range and for some trees both were outside this range. In the first 
instance Model (3) is reduced to two segments and in the second to a single segment. 
Since no trends between the 0:1 and ss covariates which could explain this were observed 
and a submodel to predict the number of segments would add an extra, possibly 
unnecessary level of complexity to the model, a three-segment model was assumed. 
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When ax were both in the range [0,1] the fs parameter estimates obtained above were 
graphed against ss covariates but no trends were obvious. The ai were then assumed 
to be independent of the measured covariates and the resultant submodels, each involving 
a simple mean of the a{ for 0 < a{ < 1, were substituted back into Model (3). This 
model was then refitted while allowing only the three linear parameters to vary by 
tree. The resulting conditional estimates of each fi were graphed against ss covariates 
and the only trend observed was between fix and each of £ and MD. Incorporating 
these effects gives the first term of the model now as fii(3z2-2z) where 

fi^fi^ + finR +/312AfD. 

The fs parameter estimates were obtained using a special purpose FORTRAN 
program which used the Gauss-Newton method of nonlinear estimation. 

From this point on the model was developed and estimated using a random subset 
of the data where a single d, and corresponding h and v values were randomly selected 
from each tree. Although the above analyses did not suggest any relationship between 
the fi2 or fi3 and tree size such a relationship would be expected. The relative size of 
fi2 and fis determines the predicted degree of butt swell since for a2 > «i increasing 
fis relative to fi2 increases butt swell while a2 determines the point below which butt 
swell occurs. So to investigate the effect of DBH on butt swell the data were classified 
into four DBH classes (<20, 20-30, 30-40, >40cm). The parameter estimates for 
each DBH class were then graphed against the class midpoints to help determine 
how DBH could be incorporated in Model (3). Unlike the previous ss graphical 
analysis of fi, there was a trend with DBH for each of fi2 and fis. The following 
model, incorporating the best ss submodels for fi2 and fis of those investigated, was 
fitted to the random subset data 

y(z) = faQf-lz) + finDiz-atfh + fisiD(z-a2)% (8) 

where h are as given for Model (3). 

Note that the formulae, based on Eqn (8), for calculating diameter and volume 
to a given height as well as those for calculating height and volume to a given 
diameter are the same as those for Model (3) but with fi± replacing fiu fi2\D re
placing fi2i and fiz\D replacing fis. 

A compatible version of Model (8) was fitted using the constraint given by (4) 
imposed on fisv The form of the compatible model is thus 

y(z) — as for Model (8) (9) 

where fi31 = -fi21/ [ ( a^ -D/ te i - l ) ] 8 . 

The parameter estimates and their standard errors for Model (9) are given in 
Table 3. The average-form model, Model (3), in both non-compatible and compatible 
forms, was also fitted for comparison and the statistics of fit are given in Table 4 along 
with those for Eqn (8) and (9). Eqn (9) has a 20.5% lower residual sum of squares 
(RSS) in terms of diameter than the compatible average-form model but has a slightly 
higher (3.2%) RSS than Model (8). A similar slight loss of predictive ability was 
incurred by making the average-form model compatible. 
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TABLE 4-Fit statistics for stem taper models 

Model 

Average form (3) 
Average form (3)$ 
Variable form (8) 
Variable form (9) 

No. of 
parameters 

5 
4 
7 
6 

y 

48.33 
48.55 
38.21 
39.86 

RSS* 

d 

2754.0 
2877.0 
2311.5 
2387.9 

Percentage 
variance 

of v 

74.8 
74.7 
80.1 
79.1 

S.E.(2)t 

1.11 
1.14 
1.02 
1.04 

* Residual sum of squares 
t V(variance) of a about d (cm) 
X Compatible version 

Nonlinear ols estimation for the above models was carried out using GENSTAT. 

The "empirical" compatibility of Eqn (8) was examined by integration between 
the ground and the tip as described earlier and comparing this volume to V. The ratio 
of vn/V was tabulated as a percentage across DBH classes. Over all classes the average 
was 97.99%; however, this figure ranged from 98.82% for DBH < 20 cm down to 
95.23% for DBH >60cm. The empirical compatibility of Model (3) is constant by 
nature of the model and was found to be 96.91%. Clearly the least squares fit of the 
non-compatibility model sacrifices compatibility where data are sparse (above 40 cm) 
for goodness of fit in the range of DBH where most of the data lie. 

Percentage bias and precision versus relative height for each of d and v 
given h and v given d for both Eqn (8) and (9) are given in Fig. 1. Only the results 
for the random subset data for the under-bark sample trees are shown in Fig. 1. The 
bias and precision, expressed as a percentage of prediction, for d were calculated as 
the mean and standard deviation, respectively, of I00(d-d)/d for each relative height 
class where 0.1 classes of z from 0 (tip) to 1 (ground) were used. The corresponding 
values for v given h and v given d were calculated in a similar fashion. The bias of d 
in the 0.0 to 0.1 relative height class is understated in Fig. 1. There were only nine 
sampled heights in this class if selections of total height (i.e., 2 = 0), which have 
been included in Fig. 1 and for which bias of d is zero, are ignored and the bias was 
-19.8% for Eqn (8) and -26.1% for Eqn (9). However, bias and lack of precision of 
d near the tip have not resulted in large biases or poor precision in v, given either 
h or d, near the tip (Fig. 1). In fact the precision of v near the tip approaches that of 
V (6%) as would be expected. In terms of bias and precision for volume prediction, 
Eqn (9) is superior to Eqn (8) in the butt region with the exception of precision of 
v given d where both models give similar results. The poor precision of both models 
here is of little practical significance for merchantable volume prediction since volumes 
in the butt section are usually determined from a stump height. Over-all the mean 
precision of v given h for Model (9) for the under-bark sample trees, with corresponding 
results for over-bark sample trees given in brackets, and adjusting for a mean bias of 
1.7% (-0.2%) was 5.7% (7.4%) while bias and precision for the compatible average-
form model, Eqn (3) and (4), were 0.9% (-0.5%) and 7.1% (8.5%) respectively. 
The corresponding figures for v given d were 3.9% (-0.8%), 20.1% (25.1%) and 



Candy — Models for Pinus radiata in Tasmania 107 

T H 

D bias, Eqn (9) 
A precision 

——D bias, Eqn (8) 
A precision 
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Relative height 
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Relative height 

FIG. 1—Bias and precision of predictions of diameter and volume for under-bark 
sample trees. 
(a) Diameter at a given height 
(b) Volume to a given height 
(c) Volume to a given diameter 
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3.1% (-0.2%), 24.1% (26.4%). So an improvement in precision in volume prediction 
as well as diameter has been achieved by developing the variable-form model. 

Predicted taper for Models (8) and (9) for a range of DBH is compared in Fig. 2, 
from which it can be seen that the degree of divergence between these models increases 
with increasing DBH. This divergence causes the differences in predicted volume to 
increase with DBH and towards the base which may seem counter-intuitive given that 
the stem profiles in Fig. 2 converge again at the ground. The reason for this effect is 
that volume is obtained by integrating y, in terms of z, from the tip downwards so 
that differences in stem profile reflecting differences on the y versus z scales become 
cumulative downwards on the v versus h scales. This effect was also noticed when bias 
was calculated for each cell of the two-way DBH by percentage relative height classifi
cation. The bias of v given h for Model (8) for percentage z > 80 varied from -4% 
for DBH < 20 cm to -26% for DBH > 60 cm while for Model (9) the range was 
3% to -5%. The effect of varing DBH increment on form for fixed DBH is shown 
in Fig. 3. The interpretation of Fig. 3 is confused by the fact that the base model does 
not truly reflect actual taper near the tip but, taking this into account, taper apears to 
increase with increasing DBH increment in the top two segments. Investigation of the 
way changes in R change average form is not possible since for fixed DBH varying 
total height also changes average form because, as mentioned previously, given DBH 
and H Model (3) describes average form. 

CONCLUSIONS 

The algebraically-compatible, variable-form, segmented stem taper model combined 
with the modified Schumacher tree volume model is the recommended system of models 
for the prediction of tree volume, stem taper, upper stem volumes to either a given 
height or diameter limit, and lower stem volume to a given height. 

The ability to make any form of tree volume model compatible with Cao's model 
has the advantage that the best tree volume model can be selected. The combined 
variable and constant form factor models inadequately modelled tree volume compared 
to Schumacher's model. A slight but significant improvement in Schumacher's model 
was obtained by incorporating mean annual DBH increment and DBH/total height 
ratio. 

Incorporating these two tree variables as well as DBH improved the fit of Cao's 
segmented taper model. The model's control of butt swell using DBH justifies the 
assumption of a three-segment model even for small trees with little or no butt swell 
for which a two-segment (i.e., no butt swell) model would be adequate. The use of 
DBH in this way simplifies the model by allowing one form of base model for the 
whole DBH range and is a logical extension of the average-form model. Further work 
is required to validate the predicted effect of DBH increment on taper. 

Enforcing compatibility on the taper model is convenient since there is no need 
to try to reconcile two different estimates of tree volume (i.e., obtained either from 
the tree volume equation or by integrating the taper equation from ground to tip) 
as with the non-compatible model. Also, compatibility resulted in improved precision 
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FIG. 2—Predicted stem taper for Models (8) ( ) and (9) ( ) for a 
DBH of 20, 30, 40, and 50 cm. 

0-0 0-2 0-4 0-6 0-8 1-0 1*2 

Relative diameter (d/Du) 

FIG. 3—Predicted stem profiles for Model (9) for a DBH of 40 cm and percentages 
of 80, 90, 100, 110, and 120 of the mean DBH increment of 2.1 cm/year. 
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and reduced bias of volume predictions in the butt section. The compatible model 
suffered a larger bias of diameter predictions near the tip but less bias in the butt 
than the non-compatible model. If estimates from the tree volume equation are unbiased 
then estimates of tree volume obtained by integrating the non-compatible taper equation 
will be biased. For large trees this bias was large, around 4.8%. 

The direct effects of stand variables such as site index and management practices 
such as thinning have not been included in the model since their direct effect could 
not be detected; however, their indirect effect, via DBH/total height ratio and mean 
annual DBH increment, has been included in both tree volume and stem taper models. 

The precision of predictions was in general poorer for the over-bark sample trees 
although bias was in general smaller and in the opposite direction to the under-bark 
sample trees. The difference in the bias of predictions between the two sets of sample 
trees was statistically significant (p<0 .01 ) but it is not clear at this stage what effect 
these differences will have in application. The difference in bias between samples reflects 
variation in total tree volume and/or stem taper unaccounted for by the model. The 
selection of a sample tree to be measured either under-bark or over-bark was not 
determined randomly so the above differences could be due to regional variation. 
Empirical Bayes estimation, for example, as applied to nonlinear growth models by 
Berkey (1982) and Gertner (1984), could be used to regionalise the models but the 
added accuracy of such an approach would be at a cost in terms of simplicity of model 
application. 
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