
Haartveit & Flæte — Rapid prediction of basic wood properties 393

New Zealand Journal of Forestry Science 36(2/3): 393–407 (2006)

RAPID PREDICTION OF BASIC WOOD PROPERTIES
BY NEAR INFRARED SPECTROSCOPY*

ERLEND YSTRØM HAARTVEIT† and PER OTTO FLÆTE
Norwegian Forest and Landscape Institute,

Raveien 9, N-1431 Ås, Norway

(Received for publication 1 November 2005; revision 28 March 2006)

ABSTRACT

The optimal utilisation of a wood raw material is dependent on the wood
properties. In this study near infrared (NIR) spectroscopy was used to non-
destructively predict density, modulus of elasticity, and modulus of rupture
for small clear specimens cut from Picea abies (L.) Karst. (Norway spruce)
trees. NIR spectra were recorded directly on the wood surface of each
specimen as close as possible to the fracture developed during the bending
test. Models were calibrated using partial least squares regression. The
validation method was test set validation by data splitting. The correlation
between predicted and measured values was highest for modulus of elasticity
(0.86), followed by modulus of rupture (0.84) and density (0.79). The
validation of the models showed that the average accuracies of predictions
were 20.3 kg/m3 for density, 1.1 GPa for modulus of elasticity, and 6.1 MPa
for modulus of rupture. Results are comparable to what has been found for
other tree species, such as Pinus radiata D. Don (radiata pine), Pinus taeda
L. (loblolly pine), and Larix decidua Mill. (European larch).

Models for predicting density, modulus of elasticity, and modulus of rupture
based on NIR spectra outperformed simple regression models using the mean
annual ring width as the independent variable. NIR spectroscopy is a rapid
tool for characterising organic materials. It requires minimal sample
preparation and spectra are collected on solid wood, rapidly and non-
destructively. For these reasons the method should be tested in production
lines for lumber. In future research we aim for reliable predictions of
mechanical properties of industrially manufactured lumber using models
based on NIR spectroscopy and multivariate statistical methods.
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INTRODUCTION

The properties of wood as a raw material are decisive for the quality of the final
products. Wood density is an important indicator of wood physical and mechanical
properties, pulp properties, and pulpwood productivity. Many timber products
have a load-carrying function and should therefore have sufficient strength to
guarantee the desired level of structural safety and sufficient stiffness to meet the
stability requirements. Bending stiffness and bending strength are wood properties
that strongly affect the success of the products used in load-carrying constructions.
Bending stiffness is measured as the modulus of elasticity (MOE), or the beam’s
resistance to bending. Bending strength is measured destructively as the modulus
of rupture (MOR), which measures the maximum load a beam will carry before it
ruptures. Modulus of elasticity and modulus of rupture have been shown to be
correlated (Kliger et al. 1998), and affected by wood properties such as knots
(Hoffmeyer 1987), annual ring width (Kliger et al. 1995), log taper (Oja et al. 2001),
wood density (Johansson 1997), spiral grain (Dinwoodie 2000), and microfibril
angle (Cave & Walker 1994).

The variation in wood properties is tremendous. In many parts of the world where
the raw material to a large degree consists of wood from fast-grown plantations,
with significant proportions of juvenile wood, there are serious concerns about
decreased stiffness and strength. Slower growth and higher ages at final felling have
minimised this problem in Scandinavia. However, wood from fast-grown plantations
will in future represent a higher proportion of the wood supply in Scandinavia too.

In lumber manufacturing, testing and sorting are carried out mainly after the sawing
operation. Which dimensions to produce is determined from the diameter and
length of the log, and to a smaller degree from its internal wood quality. Knowledge
about the variation between and within trees can be valuable for the development
of tools for prediction of mechanical properties of wood prior to lumber
manufacturing. This would improve possibilities for better utilisation of the raw
material, as wood can be more appropriately allocated to final products. Several
techniques, such as X-ray log scanning (Oja et al. 2001), optical log scanning
(Jäppinen & Beauregard 2000), and acoustics (Tsehaye et al. 2000) have been
reported capable of sorting logs according to mechanical properties of the produced
lumber. It has also been shown that measurements taken on standing trees in the
forest and on unprocessed logs can be utilised successfully in models for predictions
of modulus of elasticity and modulus of rupture of the produced lumber, and the
mean annual ring width has been identified as an important variable (Haartveit &
Flæte 2003). These techniques require either expensive and time-consuming
measurements and analyses, or an expensive and complex storing of information
about each individual log in an external database.
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A requirement for techniques used in industrial applications is for results to be
produced fast, so that the speed of the production line is not affected. NIR
spectroscopy requires minimal sample preparation, and spectra can be collected
rapidly and non-destructively. The method is particularly suited for characterising
organic materials. NIR instruments are at present used in production lines, e.g., for
sorting organic waste. NIR spectroscopy has also been used to model yield and
cellulose content of pulps (Wright et al. 1990). A comprehensive overview of
applications of NIR spectroscopy on trees and wood has been provided by Kelley
et al. (2004). NIR spectroscopy has a large potential as an alternative to time-
consuming and/or expensive analyses. Several applications of NIR spectroscopy
are relevant for this study. NIR spectroscopy has been used to predict wood density
of several tree species, for example European larch (Gindl et al. 2001), Norway
spruce (Thygesen 1994; Hoffmeyer & Pedersen 1995; Hauksson et al. 2001),
Eucalyptus delegatensis R.T.Baker (Schimleck et al. 2001), Eucalyptus globulus
Labill. (Schimleck et al. 1999), and loblolly pine (Schimleck et al. 2003). Modulus
of elasticity of small clear specimens of radiata pine has been modelled using NIR
spectroscopy (Thumm & Meder 2001), and Kelley et al. (2004) and Gindl et al.
(2001) used NIR spectroscopy to predict modulus of elasticity and modulus of
rupture of loblolly pine and European larch, respectively.

A NIR spectrum contains chemical and physical information about a sample.
Various compounds in biological materials have overlapping peaks in the spectra,
making multivariate data analysis compulsory. The data from a NIR spectrum may
consist of thousands of variables measured for each sample. Each variable
corresponds to the reflectance or transmittance measured from each wavelength.
Projection to Latent Structures using Partial Least Squares methodology (Martens
& Næs 1989) is applied to overcome problems encountered when using numerous
and correlated variables as independent variables in the X-matrix for prediction
purposes. NIR analysis relies on developing a calibration model that relates the NIR
spectra of a large number of samples to their corresponding values for the response
variable, measured by a reference method. The calibration model is then used to
predict new samples based on their NIR spectra.

The objective of this study was to evaluate NIR spectroscopy combined with
multivariate data analysis as a tool to non-destructively predict density, modulus of
elasticity, and modulus of rupture of Norway spruce wood.

MATERIALS AND METHODS
Sampling of Wood Specimens

The wood specimens used in these experiments were collected from Norway spruce
trees grown in plantations at seven different locations north of the Arctic Circle in
Norway.
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A 500-m2 circular sample plot was established in the centre of each stand. Four trees
were randomly sampled within each sample plot, except from one stand where five
trees were randomly sampled. The mean age of the sampled trees was 49 years,
ranging from 30 years to 72 years. Three small clear specimens (20 × 20 mm and
340 mm long) were prepared from air-dried wood from each stem, one from each
of three different radial positions in the cross section: close to the pith, in the middle
of the cross section, and close to the cambium. The specimens were collected 1.5
–2.5 m above the base of the tree. One of the specimens located close to the
cambium had to be discarded because of defects, giving in total 86 small clear
specimens.

Measurements of Density, Modulus of Elasticity, and
Modulus of Rupture

The specimens were conditioned in standard environment to 12% wood moisture
content. Wood density was measured at 12% moisture content according to ISO
3131 (ISO 1975a).

Modulus of elasticity and modulus of rupture were determined according to ISO
3349 (ISO 1975b) and ISO 3133 (ISO 1975c). The load was applied on radial
surfaces (tangential bending).

NIR Spectroscopy

After mechanical testing the specimens were stored in a room without regulation
of the air humidity at approximately 20ºC. One wood sample (20 × 20 × 30 mm)
was cut from each wood specimen as close as possible to the fracture resulting from
the modulus of rupture measurements (Fig. 1). NIR spectra were recorded directly
on the cross-sectional wood surface adjacent to the fracture of each specimen.
Scanning of spectra was performed in reflectance mode, in the 700–2500 nm range,
in 0.35-nm steps, by a PerkinElmer Spectrum One NTS system equipped with a

FIG. 1–A wood specimen after modulus of rupture measurements. The sample for
NIR measurements is indicated.
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Near Infrared Reflectance Accessory package. The specimens were placed directly
on the circular sapphire window which had a diameter of 10 mm. For each spectrum
25 scans were collected and averaged. Spectra below 900 nm were discarded
because of high levels of noise observed in the region 700–900 nm. Before analysis
the wavelength variables were reduced by a factor of 3 by averaging.

Statistical Analyses

The NIR spectra are complex, with numerous broad overlapping bands (Fig. 2), and
there are usually strong correlations between variables in the X-matrix. This makes
it necessary to use multivariate statistical methods when analysing relationships
between the spectra and the response variable.

All models were calibrated and validated using partial least squares 1 regression.
Partial least squares 1 is a linear modelling method that compresses the spectral data
and projects them on to partial least squares components. The partial least squares 1
method extracts the spectral information with the largest covariance to the dependent
variable (Martens & Næs 1989). Partial least squares components are mutually
orthogonal, thus avoiding problems related to co-linearity among the variables in
the X-matrix. The partial least squares method is also well suited to analyse NIR
data with numerous variables in the X-matrix.

The reflectance data were expressed as apparent absorbance (log 1/reflectance). All
spectra were centred before analysis. Multiplicative scatter correction was used to
transform the data, in order to compensate for multiplicative and additive scatter
effects in the spectra (Martens & Næs 1989). Scatter effects are effects caused by
physical phenomena, such as particle size, rather than chemical properties. They
interfere with the relationship between chemical properties and shape of the
spectrum (Esbensen 2000). Multiplicative scatter correction tends to simplify the

FIG. 2–The average NIR spectrum for the 86 wood specimens.
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calibrated model by reducing the number of partial least squares components
required, and in many cases improving prediction results (Næs et al. 2002). The
analyses were also performed on the original NIR spectra, and first and second
derivative spectra. The multiplicative scatter correction pre-treatment gave better
results, and only these will be reported.

The mean annual ring width has been an important variable in prediction models
for modulus of elasticity and modulus of rupture in lumber (Haartveit & Flæte
2003). For small clear samples the annual ring widths are possible to measure
quickly and relatively easily. Prediction models using the mean annual ring width
to predict density, modulus of elasticity, and modulus of rupture were therefore
compared with the models based on NIR spectroscopy.

All statistical analyses were performed using The Unscrambler® version 9.2.

Model Validation

Model validation was performed using test set validation by data splitting. For each
of the three wood properties (density, modulus of elasticity, and modulus of
rupture), the test set was selected as follows: first the data were sorted into
ascending order according to the wood property of interest. Thereafter every fourth
specimen was selected as a test set. This ensured that specimens covering the
complete range of values were present in the test set.

The modelling error is estimated as the difference between the calibrated values of
the response variable (ŷ cal) and the measured values of the response variable (ycal)
for each wood sample.

Modelling error = (ŷcal – ycal)

The sum of the squared differences over all n wood samples gives the calibration
residual Y-variance. The square root of the calibration residual Y-variance is
referred to as the root mean square error of calibration (RMSEC), and is defined
(Esbensen 2000) as:

∑ (ŷcal,i – ycal,i)2

RMSEC = ––––––––––––
               √            n

where ŷcal,i  is the fitted value of sample i,
ycal,i is the observed value of sample i, and
n is the number of samples in the calibration set.

The root mean square error of prediction (RMSEP) estimates the expectation of the
average error when predicting new samples, expressed in the same unit as the
dependent variable. It is the square root of the residual validation variance and is
defined (Esbensen 2000) as:

  n

i=1
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1RMSEP = –– ∑ (ŷval,i – yval,i)2

                 √ N

where  ŷval,i is the predicted value of sample i,
yval,i is the measured value of sample i, and
N is the total number of samples in the test set.

The root mean square error of calibration is reduced when the number of partial
least squares components added to the model increases. The decision regarding
how many to include in the model is therefore difficult to make solely by evaluating
the root mean square error of calibration. However, as more components are added
to the model, the residual validation variance tends to increase.

The goodness of the models was evaluated using the correlation between observed
and fitted values for model calibration (rcal) and between observed and predicted
values for model validation (rval) in addition to the root mean square error of
calibration and the root mean square error of prediction.

It is generally seen as advantageous for models to have a small number of partial
least squares components. As more are added to a model, the residual validation
variance decreases to a minimum before it starts increasing. The number of partial
least squares components that minimises the residual validation variance is often
considered optimal. Software designed to analyse NIR data takes this into account
and the model with the lowest residual validation variance determines the optimal
number of partial least squares components. Even though addition of further partial
least squares components to the model will reduce the residual calibration variance,
the prediction errors will increase, and the model becomes overfitted. An overfitted
model has incorporated information not relevant to Y into the model structure,
resulting in poorer predictions of new samples.

In order to compare the prediction abilities for the three wood properties, the
relative prediction error (RPE) was used. Relative prediction error is defined
(Martens & Næs 1989) as:

(VARy – MSEP)
RPE = ––––––––––––

       Vary

where Vary is the variance of the response variable, and
MSEP is the mean square error of prediction.
RPE values close to 1 indicate excellent prediction ability, and
RPE values close to 0 indicate poor prediction ability.

RESULTS
Descriptive statistics for the calibration set, the test set, and the complete data set
are provided in Table 1.  For all models, the specimens used for modelling consisted
of 86 samples, of which 21 were selected as a test set.

  N

i=1
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Wood Density
A simple regression model using the mean annual ring width as the independent
variable was calibrated and validated. The calibration resulted in root mean square
error of calibration = 30.0 kg/m3 and rcal = 0.49, while model validation resulted in
root mean square error of prediction = 29.0 kg/m3 and rval = 0.47. For the calibrated
model based on NIR spectra, the optimal number of partial least squares components
was 3. For the model calibration, root mean square error of calibration was 20.3
kg/m3 and rcal was 0.81. The model validation yielded similar results, as root mean
square error of prediction was 20.3 kg/m3 and rval was 0.79 (Fig. 3). Hence,
calibration as well as validation results showed that models using NIR spectra

TABLE 1–Basic statistics for wood density, modulus of elasticity, and modulus of rupture
for the calibration set, the test set, and the complete data set

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Wood property Data set n Mean Standard Min Max

deviation
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Density (kg/m3) Calibration 65 392.9 34.6 317.2 454.9
Density (kg/m3) Test 21 394.7 33.1 331.0 453.2
Density (kg/m3) Complete 86 393.4 34.1 317.2 454.9

MOE (GPa) Calibration 65 10.4 2.3 5.5 16.2
MOE (GPa) Test 21 10.4 2.2 6.7 14.9
MOE (GPa) Complete 86 10.4 2.3 5.5 16.2

MOR (Mpa) Calibration 65 71.2 11.9 44.1 96.4
MOR (Mpa) Test 21 71.8 11.3 51.5 92.3
MOR (Mpa) Complete 86 71.4 11.7 44.1 96.4
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

FIG. 3–Results from model calibration (left, n = 65) and validation (right, n = 21) for wood
density. The number of partial least squares components is 3. Solid line: regression
line for measured vs. predicted wood density; dashed line: target line (y = x).
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outperformed the simple regression model based on the mean annual ring width as
the predictor.

Modulus of Elasticity

A simple regression model using the mean annual ring width as the independent
variable was calibrated and validated. The calibration resulted in root mean square
error of calibration = 1.75 GPa and rcal = 0.65, while model validation resulted in
root mean square error of prediction = 1.71 GPa and rval = 0.61. For the calibrated
model based on NIR spectra, the optimal number of partial least squares components
was 7. For the model calibration, root mean square error of calibration was 1.16 GPa
and rcal was 0.87. The model validation yielded similar results as root mean square
error of prediction was 1.09 GPa and rval was 0.86 (Fig. 4). Hence, rcal and rval were
higher for modulus of elasticity than for wood density. Also, for modulus of
elasticity the model based on NIR spectra outperformed the simple regression
model with the mean annual ring width as the independent variable.

Modulus of Rupture

A simple regression model using the mean annual ring width as the independent
variable was calibrated and validated. The calibration resulted in root mean square
error of calibration = 9.43 MPa and rcal = 0.60, while model validation resulted in
root mean square error of prediction = 8.36 MPa and rval = 0.72. For the calibrated
model based on NIR spectra, the optimal number of partial least squares components
was 5. For the model calibration, root mean square error of calibration was 6.33
MPa and rcal was 0.84. The model validation yielded similar results, as root mean

FIG. 4–Results from model calibration (left, n = 65) and validation (right, n = 21) for
modulus of elasticity (MOE). The number of partial least squares components is 7.
Solid line: regression line for measured vs predicted modulus of elasticity; dashed
line: target line (y = x).
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square error of prediction was 6.13 MPa and rval was 0.84 (Fig. 5). Hence, the
correlation between predicted and observed values was not as strong as the
correlation presented for modulus of elasticity, but was better than the corresponding
correlation presented for wood density. For modulus of rupture too, the NIR-based
models outperformed the simple regression model using the mean annual ring
width as the independent variable.

To compare models for different wood properties, the relative prediction error
(RPE) was used. Wood density had the smallest values of relative prediction error
(0.64) followed by modulus of rupture (0.72) and modulus of elasticity (0.77).

DISCUSSION

Based on the presented results, we found that NIR spectroscopy combined with
partial least squares models is a technique well suited for predictions of wood
density, modulus of elasticity, and modulus of rupture. Measured in terms of the
validated correlation coefficient (rval), the best predictions were obtained for
modulus of elasticity, followed by modulus of rupture and wood density. This is
also reflected by the relative prediction errors that were smallest for wood density,
followed by modulus of rupture and modulus of elasticity.

Hoffmeyer & Pedersen (1995) evaluated NIR spectroscopy for predicting wood
density of Norway spruce clearwood specimens. As in the present study, the spectra
were measured on cross sections. Root mean square error of calibration and root
mean square error of prediction values were higher than found in the present study
when they used a model with 4 partial least squares components and at the same

FIG. 5–Results from model calibration (left, n = 65) and validation (right, n = 21) for
modulus of rupture (MOR). The number of partial least squares components is 5.
Solid line: regression line for measured vs. predicted modulus of rupture; dashed
line: target line (y = x).
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level as the present study for a model with 8 partial least squares components. In
the present study, wood density was predicted with a model using only 3 partial least
squares components and the risk of overfitting the model was therefore regarded as
small. Hoffmeyer & Pedersen (1995) found a higher correlation between NIR-
predicted and measured wood density than in our study. A likely explanation for
this is that the range of density was greater (350 kg/m3–580 kg/m3) compared with
the material in our study (317 kg/m3–455 kg/m3).

NIR spectroscopy has also been used for predictions of modulus of elasticity of
small clearwood specimens of radiata pine by Thumm & Meder (2001). Spectra
were recorded on one radial and one tangential face of each specimen, as the
specimens were moved past a NIR detector. Prediction models based on spectra
recorded on radial wood faces performed better than models based on spectra
recorded on tangential faces. The present study did not allow for a similar
comparison.

Kelley et al. (2004) measured modulus of elasticity and modulus of rupture of
loblolly pine wood in a three-point bending test. NIR spectra collected from the
radial face of solid wood specimens were used to construct partial least squares-2
models for modulus of elasticity and modulus of rupture. Their analyses were
similar to the present study, although the experimental design was based on
collecting all wood specimens from three different trees. The calibrated model was
based on full cross validation, and approximately one-third of the samples were
randomly selected as a test set. The range of modulus of elasticity and modulus of
rupture was slightly wider for Kelley et al. (2004) than for our study. The root mean
square error of prediction values, as well as the validated correlation coefficients,
were comparable to the results reported here.

Gindl et al. (2001) used NIR spectra collected on the radial surface of European
larch to model wood density, modulus of elasticity, and modulus of rupture.
However, Gindl et al. (2001) had a material with considerably larger variations with
respect to density, modulus of elasticity, and modulus of rupture. The larger range
of values observed for all wood properties examined by Gindl et al. (2001) explains
why their correlations between predicted and observed values were higher than in
the present study. When comparing the estimate of the average error of prediction,
the present study had slightly lower values than those of Gindl et al. (2001). Note,
however, that the results reported by those authors were based on full cross
validation, which increases the risk of over-estimating the prediction abilities of
partial least squares models (Esbensen 2000).

The ranges of wood density, modulus of elasticity, and modulus of rupture
(Table 1) were moderate compared with previous Norwegian studies from the same
region (Okstad & Kårstad 1985). Despite the moderate range of the response
variables, the presented prediction models performed well, even when compared
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to studies with a larger range of values with regard to wood density (Hoffmeyer &
Pedersen 1995; Gindl et al. 2001), modulus of elasticity (Thumm & Meder 2001;
Kelley et al. 2004), and modulus of rupture (Gindl et al. 2001). Increasing the
variance of the response variable commonly leads to improved predictions.

It has been reported that for wood specimens of radiata pine with high values of
modulus of elasticity, predictions based on NIR measurements result in an
under-estimation of modulus of elasticity (Thumm & Meder 2001). It is suggested
that this is caused by a kind of saturation effect. This means that spectra of wood
specimens with high modulus of elasticity show much smaller responses to
differences in modulus of elasticity values than spectra from specimens with lower
modulus of elasticity values. We did not find evidence of a similar effect for
Norway spruce, but it possibly exists for samples with higher values of modulus of
elasticity than found in the present material.

When comparing results from different studies using NIR spectroscopy and partial
least squares modelling, model validation is a key issue. The partial least squares
methods have been developed in the field of chemometrics (Martens & Næs 1989),
and the purpose has commonly been to develop models for prediction purposes.
Comparisons between different studies should be made with care if different
methods for model validation have been used.

Two methods for model validation are test set validation and cross validation.
When using test set validation a new individual and independent sampling of new
observations is used for model validation. Test set validation is always the preferred
method (Esbensen 2000). When only one sampling exists, an approximation to test
set validation is performed by splitting the data set in two parts. The first part is used
for model calibration, and the remaining samples are used for model validation. In
the absence of a true test set from a new and independent sampling, the present study
was validated using test set validation by data splitting. A new independent
sampling is, however, a more reliable method of validation (Esbensen 2000; Kozak
& Kozak 2003).

Cross validation involves iteratively excluding one or a group of observations from
model calibration, and thereafter using the calibrated model to predict the excluded
samples. This procedure is repeated until all samples have been excluded and
predicted. When only one observation is excluded iteratively it is referred to as full
cross validation; excluding a group of observations iteratively is referred to as
segmented cross validation. Full cross validation is criticised for over-estimating
the predictive capabilities of the regression models, since removing only one
observation from the data hardly affects the y-x relationship (Esbensen 2000).
When using segmented cross validation, the data are usually separated into
segments using random or systematic selection. An alternative is to divide the data
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into segments based on natural partitions of the data — for example, when the
complete sample is collected from different geographical locations. In such cases
the data can be divided into segments based on growth location (Haartveit et al.
2003). The root mean square error of prediction values and validated correlation
coefficients resulting from any cross validation procedures are averages of the
results obtained for all segments. Hence, differences in the model’s ability to
predict the segments are not discovered.

Conservative validation methods such as test set validation will reduce the
probability of over-estimating the predictive capabilities of the models compared
to full cross validation. When the objectives are reliable predictions, conservative
validation methods are preferred.

CONCLUSIONS

This study showed that, compared with the mean annual ring width, NIR spectroscopy
is superior in predicting density, modulus of elasticity, and modulus of rupture of
small clear specimens of Norway spruce.

Haartveit & Flæte (2003) used stand and tree characteristics to predict modulus of
elasticity and modulus of rupture of Norway spruce structural lumber. The models
showed promising results with respect to pre-sorting of logs in order to create a
better fit between the quality of logs and the expected properties of the final
products. Since NIR spectroscopy is a very rapid technique, it is of interest to
investigate if NIR spectra obtained on logs can be used to predict modulus of
elasticity and modulus of rupture of the lumber. Another application of interest is
to evaluate NIR spectroscopy for on-line strength grading of structural lumber.
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