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Validation of models predicting modulus
of elasticity in Douglas-fir trees, boles,
and logs
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Abstract

Background: Acoustic tools have simplified estimation of wood modulus of elasticity (MOE). Strong relationships
between acoustic velocity and MOE of logs have encouraged use of acoustics at earlier points in the value chain,
culminating in the development of acoustic harvesting systems. With accurate estimates of MOE of individual trees,
improvements in efficiency along the value chain and increased value recovery will result.
Our aim was to quantify the accuracy of MOE estimates at three distinct points: pre-harvest (standing trees), during
harvest (merchantable boles), and post-harvest (5-m logs). We hypothesised that: (1) MOE estimated from acoustic
velocity and wood density would provide greatest accuracy; and (2) bole estimates with a resonance tool would be
more accurate than tree estimates with a time-of-flight tool.

Methods: A sample of 168 Douglas-fir (Pseudotsuga menziesii [Mirb. Franco]) trees, representing the variability in
acoustic velocity of 700 standing 36–51-year-old trees, was harvested from three sites. Prior to harvest, time-of-flight
and breast-height diameter were recorded. After felling, resonance velocities of boles and subsequent 5-m logs were
recorded. Discs, cut from log ends, were immersed, and green wood density determined. Half the logs were processed
into boards, the other half into veneer sheets, and all products (in excess of 6000) non-destructively tested for MOE.
MOE of parent trees, boles, and logs was then calculated from the mean MOE of derived products.
Predictive mixed-effects models of tree, bole, and log MOE were developed using data from 139 trees. Fixed effects
comprised combinations of velocity squared, wood density, acoustic MOE (derived from the wave equation), diameter,
height, taper, and age. Random effects comprised site, plot, and, at the log level, tree. The models were validated using
data from the remaining trees and compared using multiple performance metrics.

Results: For estimating tree MOE, a model with velocity squared, wood density, and taper as predictors is recommended.
For estimating MOE of boles and logs, models with velocity squared and wood density are recommended. The models
have an accuracy, as determined by RMSE, of about ± 2 GPa.

Conclusions: For accurate MOE estimation, velocity alone is insufficient. Knowledge of wood density is necessary for
improved accuracy.
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Background
Acoustic tools have greatly simplified the process of asses-
sing the dynamic modulus of elasticity (MOE) of trees and
wood products, and extensive reviews of their use are
provided by Legg and Bradley (2016) and Wang (2013). In
short, a sound wave is transmitted, typically by a mechan-
ical impact with a hammer, between one probe and the cut
end (resonance method, Wang 2013) or between two
probes (time-of-flight method, Bucur 2006; Senalik et al.
2014). Estimates of MOE are then derived from predictive
models that include acoustic velocity, V, or the square of
acoustic velocity,V2, as a predictor variable.
Acoustic tools have been used in log production settings

for more than a decade (Dickson et al. 2004), but the con-
cept of moving the process closer to the beginning of the
value chain and implementing acoustic tools on harvester
heads is more recent (Walsh et al. 2014). Amishev and
Murphy (2008a) examined the feasibility of using acoustic
technology on harvesting equipment for identification of
veneer quality Douglas-fir logs (Pseudotsuga menziesii
[Mirb.] Franco). They also reported on in-wood non-
destructive measurements to determine applicability for
in-forest sorting of veneer quality logs in second growth
Douglas-fir and found it likely to improve recovery of
higher quality logs (Amishev and Murphy 2008b). The
importance of early application is succinctly stated by
Divos (2010); “The earlier well-informed decisions are
made within the forest-to-products chain, the greater
the potential value addition. Thus if it can be shown
that strong relationships exist between tree and prod-
uct, then those relationships can then be used to
generate added value.”
Acoustic tools make use of the often-cited relationship

between MOE and V2, based on the fundamental wave
equation (Eq. 1). The equation states that the dynamic
MOE of a homogeneous and isotropic material is equal
to the square of the acoustic velocity (V2) multiplied by
its density (ρ).

MOE ¼ ρ:V 2 ð1Þ

Though wood is heterogeneous and orthotropic, V2

(or V), has been found to be a highly significant predictor
variable in linear models. Yet the strength of the relation-
ship between MOE and V2 (or V) varies considerably
(Achim et al. 2010).
In forestry literature, the strength of the relationship

between MOE and V2 (or V) has often been cited in terms
of the correlation coefficient, r (Eq. 2), or the coefficient of
determination, denoted R2. R2 (and any variation of R2)
explains the variance of a linear model. Amongst the more
common variations of R2 is the adjusted R2, R2adj, which
adjusts for the number of variables in the regression equa-
tion. For linear mixed-effects models with a hierarchical

(i.e. nested) structure, Nakagawa and Schielzeth (2013) de-
rived two R2 variates: marginal R2 and conditional R2. The
former describes the proportion of variance explained by
fixed factors alone, while the latter describes the proportion
of variance explained by both fixed and random factors.
The method, developed for generalised linear models
and applicable to random intercepts models, has since
been extended, to accommodate random slope models,
by Johnson (2014).
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where x is the explanatory variable, y the response vari-
able, and n the sample size.
In terms of R2, the relationship between MOE and V2

(or V) has been demonstrated to nearly span the range
of values; from 0, indicating no relationship, to 0.98, just
short of the perfect relationship.
Low values of R2 were found for relationships between

acoustic velocity in standing radiata pine (Pinus radiata
D.Don) trees, and logs, with machine stress-grades of
boards derived from those trees, and logs (Matheson et al.
2002). Relationships with trees propagated from an or-
chard seedlot recorded an R2 close to 0 (r = 0.01), while
the control trees recorded an R2 equal to 0.11 (r = 0.33).
The relationship with logs had an R2 of 0.25 (r = 0.5).
Moderate values of the coefficient of determination

were obtained by Lowell et al. (2014) for relationships be-
tween acoustic velocities in standing Douglas-fir trees
with mean veneer MOE derived from those trees (R2 =
0.21). Also with Douglas-fir, Briggs et al. (2008) deter-
mined an R2 of 0.62 (after removal of outliers) for the rela-
tionship between mean timber MOE of the lowermost log
in a tree and acoustic velocity of that log. A coefficient of
determination of 0.53 was obtained by Auty and Achim
(2008) for the relationship between standing tree acoustic
velocity of Scots pine (Pinus sylvestris L.) and MOE of
small clear samples.
Achim et al. (2010) found that relationships between

static MOE of sawn boards and acoustic velocity in logs
varied by species; with R2 values ranging from a low
0.07 (for black spruce (Picea mariana [Mill.] Britton,
Sterns & Poggenburg)) to 0.51 (for jack pine (Pinus
banksiana Lamb.) and trembling aspen (Populus tremu-
loides Michx.)). They also determined, for white spruce
(Picea glauca [Moench] Voss), that static MOE and dy-
namic MOE were highly correlated (R2 = 0.69).
With logs grouped into percentile batches, Carter et

al. (2005) demonstrated a nearly perfect relationship
(R2 = 0.98) between dry timber MOE and log-batch velocity
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for a species referred to as Southern pine and radiata pine.
However, the result was overly optimistic, because an aver-
age trend through averages (linear regression through
batches) has a high R2 due to the removal of much of the
original variation.
Predictor variables other than acoustic velocity have been

used, either in simple linear models or in multivariable
models, to estimate MOE of trees and logs. Relationships
with diameter alone have tended to be weak. Farrell et al.
(2008) determined an R2 of 0.09 for Eucalyptus nitens
(H.Deane & Maiden) logs, and Wang et al. (2013) an R2 of
0.12 for Douglas-fir logs. For Douglas-fir trees, Lowell et al.
(2014) determined an R2 of 0.21 for the relationship with
breast-height diameter (D), and a slightly stronger relation-
ship, with R2 = 0.28, for tree taper. Relationships with the
combination of V and D have been reported as stronger
than those with V alone (e.g. R2 = 0.36, Farrell et al. 2008,
and R2adj = 0.50, Wang et al. 2013). Paradis et al. (2013) de-
termined an R2 of 0.41 for the relation with V2, D, and an
interaction term between the two variables for black spruce.
Relationships with wood density as a predictor have

tended to be relatively strong. This comes as no surprise as
wood density is one of the key determinants of MOE
(Zobel and van Buijtenen 1989), explaining up to 60–70 %
of the variation in MOE in clear wood (Rozenberg et al.
1999; Evans and Ilic 2001). Worldwide correlations with
data obtained from 161 tree species have also demonstrated
strong positive relationships between MOE and density
(Niklas and Spatz 2010). The worldwide relationships for
conifers had an R2 of about 0.57. Merlo et al. (2014) ob-
served that, in comparison to models without wood density
as a predictor, models which included density had R2 values
that were about 4–9 % higher. More modest improvements
were obtained by Dickson et al. (2004) using Pilodyn depth
as a surrogate for wood density. Liu et al. (2007) derived
models for estimating MOE of 90–100-year-old black
spruce trees. One model based on wood density, diameter,
and crown length had an R2 of 0.65 and a mean absolute
percentage error (MAPE) of 1.2 GPa; another model based
on diameter, crown length, stem taper, and stand density
had an R2 of 0.55 and MAPE of 1.4 GPa. Relatively good
accuracy metrics were obtained when the models were vali-
dated with external data (R2 = 0.55, MAPE = 1.1 GPa for
the first model, R2 = 0.43, MAPE = 1.1 GPa for the second).
Irrespective of the value of R2, models for estimating

MOE (or any other response) must be evaluated with ex-
ternal data before they are used in practice (Collins et al.
2014; Altman and Royston 2000). External validation is a
necessary step in determining the predictive capability of
the model and transportability to other settings. The use
of (or lack of ) external validation has recently come
under scrutiny. In a review of articles, Collins et al.
(2014) reported that the difference between observed
and predicted external data was one of the key

performance measures for models yet was often omitted
from the publication and concluded that “It may, there-
fore, not be surprising that an overwhelming majority of
developed prediction models are not used in practice”.
Unfortunately, none of the aforementioned models for

predicting MOE, with the exception of that by Liu et al.
(2007), were supported by external validation datasets
(though an internal validation technique, cross-validation,
was used by Merlo et al. (2014). Therefore, even though the
performance of the aforementioned models may appear to
be satisfactory, the results are an optimistic estimate of
model performance. The model parameters are optimised,
i.e. fine-tuned, to the development dataset, hence tests with
new data may demonstrate disappointing results.
External validation provides a stronger test of model

performance than internal validation because it addresses
model transportability through the use of an independent
dataset (Steyerberg and Vergouwe 2014), whereas internal
cross-validation can cause bias in error estimation (Varma
and Simon 2006).
With external validation, predictions are calculated using

the model with new data from an external dataset (i.e. dif-
ferent to that used in model development). The accuracy
(or error) between actual and estimated (external) data is
then measured using one or more performance metrics.
However, many performance metrics exist (Makridakis and
Hibon 1995), with no single method designated as the best
(Winkler and Murphy 1992). Furthermore, the use of a
single error measure may lead to incorrect interpretation.
Standard performance metrics include R2, root mean

square error (RMSE), and mean absolute percentage error
(MAPE). The use of R2 has been criticised (Willmott
1981), mainly due to its sensitivity to outliers. The RMSE
(Eq. 3), while also influenced by outliers, is a convenient
metric as it assumes the same units as the data, is repre-
sentative of the size of a typical error, and is a lower bound
on the standard deviation of a prediction error. The
MAPE (Eq. 4), on the other hand, while also influenced by
outliers, expresses errors as a percentage of the actual
data, so is easy to interpret. For binary data, performance
measures can be derived from a confusion matrix (Fawcett
2006). The 2 × 2 matrix contains four cells: true positives
(TP), false positives (FP), true negatives (TN), and false
negatives (FN). If the purpose of segregation is to identify
high MOE potential, then the true positive rate, the pro-
portion of positive cases that are correctly identified
(Eq. 5), is of primary importance.
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TP rate ¼ TP
TPþ FN

ð5Þ

To achieve our aim of quantifying the accuracy of
MOE estimates, we first developed predictive linear
mixed-effects models of tree, bole, and log MOE. The
models were then judged in terms of multiple accuracy
metrics applied across two datasets: (1) the calibration
dataset from which the models were derived, and (2) an
external validation dataset not used in model develop-
ment. Accuracy metrics for the latter dataset were of
particular interest.
Based on findings in the literature, as noted above, we

hypothesised that MOE estimated from the combination
of acoustic velocity and wood density would provide the
greatest accuracy and that bole estimates with a reson-
ance tool would be more accurate than tree estimates
with a time-of-flight tool.
Our focus was on MOE predictions of individual

Douglas-fir wood members (standing trees, boles, and logs)
from attributes of those individuals (e.g. acoustic velocity,
wood density, diameter). To aid transportability of the
predictive models to other settings, a wide range in attri-
butes was required. Thus trees were harvested from three
sites, each comprising five plots which had been managed
with differing silvicultural treatments. Though necessary to
obtain variability of attributes, and necessary as structures
in the mixed-effects models, our focus was not on model-
ling MOE as a function of site, nor of silviculture.

Methods
Sites
Three long-term Douglas-fir research trials in the Pacific
Northwest of America, two in Washington (site 803, at
47° 16′ N, 123° 27′ W, with an elevation of 175 m; and
site 805, at 48° 19′ N, 122° 9′ W, with an elevation of
168 m) and one in Oregon (site 808, at 44° 57′ N, 123°
40′ W, with an elevation of 762 m) formed the basis for
this study. Trees at sites 803 and 808 were about 50 years
old (51 and 46 years for the respective sites) while those at
site 805 were 36 years old. The sites were similar in terms
of mean annual temperature (9–11 °C), but differed in

mean annual precipitation, with 264 mm per year at
site 803, about 110 mm at site 805, and 336 mm per
year at site 808.

Silviculture
Each site comprised five plots with differing thinning treat-
ments; a control (A) which was not thinned, and four other
regimes of varying thinning intensities. The timing of thin-
ning was specified by relative density (Curtis 1982), which
in turn was dependent on stand growth rates. In some
cases, stand growth was insufficient and the prescribed
thinning treatment(s) did not occur. For example, on sites
803 and 805, the delayed thinning treatment (treatment C),
required a relative density (RD) of 65 for thinning to occur.
As this RD was not attained, the thinning operation did not
occur. On site 808 under treatment C, though the stand
was thinned, it was damaged by a storm, thus eliminating
this stand from the study. For treatments D and E with
prescribed multiple thinnings, only growth at site 805
under treatment D was sufficient for more than one thin-
ning to occur. The thinning prescriptions (thinning timings
and prescribed number of thinnings) and the actual num-
ber of thinnings that occurred are listed in Table 1. Stock-
ing levels at harvest for each of the plots is also provided.

Sample tree selection
At each plot on the three sites, all Douglas-fir trees within
an 18-m radius of the plots geometric centre were acoustic-
ally assessed. The 50 or so acoustic readings of each plot
were ordered and 12 trees selected using a stratified ap-
proach: two trees were randomly selected from the lowest
10 %, two from the highest 10 %, and eight from the middle
80 %. If a sample tree had defects (such as forks, crooks,
pistol butt, rot) that would compromise the objectives of
the study, a replacement tree was randomly selected from
the appropriate acoustic class. Examination of the effect of
such defects on acoustic velocity relationships was beyond
the scope of the study.
Half of the trees within each acoustic group on each

plot were allocated for peeling into veneer, the other half
for sawing into boards. There were no bucking decisions
concerning which log in a subject tree went to which

Table 1 Thinning prescriptions, specified by relative density (RD) following Curtis (1982), and actual number of thinnings with final
stocking at the three study sites (803, 805, 808)

Prescribed treatment Actual thinnings Stocking at harvest (sph)

Treatment No. Description 803 805 808 803 805 808

A 0 No thinning (control) 0 0 0 514 692 494

B 1 Minimal thinning: RD55→ RD30 1 1 1 287 425 292

C 1 Delayed thinning: RD65→ RD35 0 0 1 558 351 a

D 2+ Repeated thinning: RD55→ RD30, all subsequent RD50→ RD30 1 2 1 326 217 242

E 3+ Repeated thinning: RD55→ RD35, RD55→ RD40, all subsequent RD60→ RD40 1 1 1 410 400 351
aDamaged by storm and eliminated from study
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product as all logs from a tree went to the same product,
i.e. all logs from a single tree were processed to the same
product type.

Acoustic measurements of trees, boles, and logs
Standing tree acoustic velocity and breast-height diameter
were measured at harvest. A total of nine acoustic velocity
hits were recorded with the Fakopp TreeSonic tool (Fakopp
Bt. Agfalva, Hungary) for each tree. Three observations
were obtained (as recommended by the manufacturers
(Fakopp 2006)) at each of three locations, approximately
120° apart around the base of the tree. Observations were
averaged, providing a mean acoustic velocity reading for
each tree. Trees were felled, delimbed, and topped to give a
merchantable bole with a top diameter of 15 cm inside the
bark for sawmill trees, and 13 cm inside the bark for peeler
trees. Acoustic velocity of the merchantable bole was
obtained with the Director HM-200 (Fibre-gen, New
Zealand), a resonance-type tool. The boles were crosscut at
10-m intervals then crosscut again at the mid-section and
the resulting 5-m-long logs acoustically assessed with the
Director HM-200 tool.

Wood density
Each log included mill trim plus an additional length to
allow for the cutting of discs. The discs, approximately
5 cm thick, were removed from the butt end of the
bole, and from the top of each log, and processed for
green weight and green volume, to derive a measure of
wood density using the Archimedean immersion
method. Mean wood density of each bole (and each
tree) was calculated as the diameter-weighted mean of
all discs from each tree, and mean wood density of each
log was calculated as the diameter-weighted mean of
the two log-end discs.

Board and veneer production
Each log was uniquely labelled to enable full tracking of
products back to the parent bole, tree, plot, and site.
Sawmill logs were sawn into boards (nominally 5 cm
thick), kiln-dried (and after transportation to the labora-
tory where E-rating occurred, had a moisture content
(MC) of about 24 %), planed, measured (for thickness,
width, and length), graded under the supervision of a
grading inspector, and E-rated using a Metriguard E-
computer (Metriguard Inc., Pullman, WA, USA) follow-
ing standard test methods (ASTM 2003). More detail of
the procedure for determining board MOE is provided
by Wang et al. (2013). Peeler logs were steamed, peeled
into veneer sheets (with dry target sizes of 2.59 m in
length, 1.32 m in width, and 3.8 mm in thickness), dried
(using schedules determined by the cooperating mill in
accordance with their normal practices), weighed, and

measured. Veneer sheet density was derived as the
quotient of mass and volume, and all sheets were non-
destructively tested for MOE using a Metriguard 2600™
veneer tester (Metriguard Inc., Pullman, WA, USA).
More detail of the procedure for determining veneer
MOE is provided by Lowell et al. (2014). Following data
consolidation, a total of 1639 boards and 4645 veneer
sheets were available to this study.

Mean MOE
Mean MOE of logs, boles, and trees was calculated as
the volume-weighted mean MOE of constituent prod-
ucts. Therefore, mean bole MOE was identical to mean
tree MOE, thus allowing comparison of the accuracy of
time-of-flight and resonance methods.

Data consolidation
Numerous checks were made throughout the data col-
lection, processing, and data entry processes. Further
verification exercises were performed to investigate out-
liers and to examine consequences of missing data.
Much of this was performed graphically, noting the loca-
tion of the missing product within the parent log and
bole. After cleaning the data, a total of 162 trees was
available for this study; of which 139 trees (and their
products) were used in model development and the
remaining 23 trees (and associated products) reserved
for model validation. Acoustic velocity measurements of
two boles were missing, hence there were two fewer
boles than trees. All validation trees and products were
from treatment C. This enabled the model development
phase to be as close to a balanced design as possible,
while also meeting requirements for external validation.

Modelling approach
Models estimating MOE of trees, boles, and logs were
developed using the calibration dataset. Fixed effects in-
cluded velocity squared, diameter, height, taper, wood
density, age, and acoustic MOE (equivalent to V2.ρ;
Eq. 1). Interaction terms between V2 and D (following
Paradis et al. 2013) were also evaluated. Random effects
were site and plot (plot nested within site). For log-level
models, random effects included trees (nested within
plots, and plots within sites) and a first-order autocorrel-
ation structure (Pinheiro and Bates 2000), with ring
number as a covariate, included in the models to address
the correlated nature of the multiple logs cut from
each tree. The fixed and random variables for the
tree, bole, and log level models are summarised in
Table 2 while summary statistics (mean, minimum,
and maximum) for the tree, bole, and log calibration
and validation datasets are provided in Table 3.
Diameter, denoted D, at the tree level corresponded to

breast-height diameter (1.4 m), while at the bole and log
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levels, diameter corresponded to the diameter at the
base. Velocity, denoted V, at the tree level corresponded
to that derived from the “time-of-flight” measured on
the standing tree, in contrast to resonance velocity at
the other two levels. Height, denoted H, corresponded
to total tree height at the tree level, to bole length at the
bole level, and to relative height of the log within the
tree (measured from the base of the log) at the log level.
The same variable notations were used at each level, be-
ing easily discernible from the context.
Linear models were formulated using the Laird and

Ware (1982) model (Eq. 6)

y ¼ Xβþ Zuþ ε ð6Þ

where y is the response vector, X and Z are matrices of
explanatory variables corresponding to fixed and random
effects, respectively, β and u are the corresponding vectors
of parameters for the respective fixed and random effects,
and ε is a vector of random errors. The models were devel-
oped using the linear and nonlinear mixed-effects model
package, “nlme”, (Pinheiro et al. 2013) within the R envir-
onment (R Core Team 2013). For multivariable models,
which have the possibility of dependency amongst variables,
variance inflation factors (VIF, Davis et al. 1986) were com-
puted. Following O’Brien (2007), arbitrary thresholds (e.g. 4
or 10) used to eliminate a variable were not applied, and
the variance of the regression coefficients were viewed in
context. The significance of explanatory variables was
evaluated using a 0.05 level of significance.
Accuracy of models were compared using multiple

accuracy metrics (R2marg, R
2
cond, AIC, RMSE, MAPE, and

TP rate), to avoid incorrect interpretation which could
result from a single metric. Calculation of R2marg (for fixed
effects only) and R2cond (for both fixed and random effects)
for nested models followed Johnson (2014). Because R2

tends to increase with model complexity, the Akaike infor-
mation criterion (AIC, Akaike 1974), which penalises
complex models to determine a balance between model fit
and model simplicity, was also used for model selection. A
threshold value of 11.0 GPa (based on the tree breeding
value recommended by Jayawickrama et al. 2009) was

Table 2 Summary of fixed and random effects used in models
predicting mean MOE

Model level Fixed effects Random effectsa

Tree V2, D, H, T, ρ, A, E Site/plot

Bole V2, D, H, T, ρ, A, E Site/plot

Log V2, D, H, T, ρ, A, E Site/plot/tree

V = acoustic velocity (time-of-flight for trees, resonance for boles and logs,
km s−1); D = diameter (breast-height for trees, at base for bole and logs, cm);
ρ =mean weighted green wood density (kg m−3); A = age (harvest age for
trees, ring counts for boles and logs, years); H = height (total height of trees, or
length of boles (m), or relative height of log in tree); T = taper (i.e. D/H, cm m
−1); E = acoustic MOE (i.e. V2.ρ, following Eq. 1)
aw/x/z = z nested within x within w

Table 3 Summary statistics of the calibration and validation datasets (mean, min-max)

Trees Boles Logs

Variablea Calibration Validation Calibration Validation Calibration Validation

N = 139 N = 23 N = 137 N = 23 N = 481 N = 78

V (km s−1) 3.86 3.87 3.59 3.74 3.53 3.68

2.53–4.44 2.92–4.50 3.08–4.12 3.37–4.12 2.77–4.18 3.24–4.02

D (cm) 39.0 33.3 41.5 37.1 33.8 30.1

20.8–60.7 21.6–46.0 21.2–62.9 25.5–48.8 17.3–62.9 18.5–48.8

H (m)b 32.1 33.3 25.0 24.9 0.23 0.23

21.9–43.6 27.1–39.7 16.5–35.4 14.3–32.6 0.00–0.73 0.01–0.56

T (cm m−1) 1.22 1.00 1.68 1.49 1.12 0.92

0.74–2.07 0.73–1.17 1.01–2.91 1.20–1.78 0.00–3.92 0.21–2.18

ρ (kg m−3) 805 809 804 809 805 801

674–902 708–878 674–902 708–878 634–986 666–952

A (years) 44 44 41 40 32 33

36–51 36–51 33–48 34–47 13–48 17–47

E (GPa) 12.1 12.2 10.4 11.4 10.0 10.8

5.3–16.4 6.9–16.4 7.3–13.7 8.9–13.4 5.8–13.6 8.4–12.7

MOE (GPa) 10.4 10.9 10.4 10.9 10.3 10.8

6.1–15.1 8.5–12.8 6.1–15.1 8.5–12.8 4.6–16.7 6.1–14.5
aAll variables are as defined in Table 2
bFor logs, H represents relative height and is unit-less
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assumed in the classification procedure defining TP rate,
and standard scientific rounding practices applied (e.g. an
estimate of 10.95 GPa, rounds to 11.0 GPa, therefore a
true positive score would result).
The values of R2

marg, R
2
cond, and AIC were calculated

for the calibration models. Diagnostics of the calibration
models also included plots of residuals against fitted values
and plots of observed values versus fitted values. The
RMSE, MAPE, and TP rate were calculated for both cali-
bration and validation datasets, for comparative purposes;
however, those of the validation datasets were of greatest
interest because they provide insight to the practicality of
the models and parameters beyond the dataset upon which
they were derived. All predictions and subsequent calcula-
tions of RMSE, MAPE, and TP rate, were made at the
population level, because, in practice, contributions due to
random effects are unknown.

Results
The best models, in terms of the accuracy metrics, for the
calibration dataset were not necessarily the best amongst
the validation dataset, particularly for models estimating
MOE of trees. In general, there was better agreement in
performance metrics of the validation and calibration
datasets for log-level models than for tree-level models.
The combination of V2 and ρ, in the linear mixed-

effects models, generally improved estimates of MOE (in

comparison to estimates based on V2 alone), but did not
always result in the best model for estimating MOE.
Models in acoustic MOE (E =V2.ρ) generally had similar
performance metrics to models in V2 + ρ. Interaction
terms were not significant.

Models estimating tree MOE
Performance metrics of all valid tree models (i.e. models
for which all variables were significant, p < 0.05) are
shown in Table 4. In actuality, all model variables listed
in Table 4 were highly significant (p < 0.001) and had
low dependencies (VIF less than 2.2).
The strength of the relationships for estimating tree

MOE, as assessed by R2marg, ranged from 0.18 (for two
single-variable models; D and ρ) to 0.51 (for two multivari-
able models; E +T and V2 + ρ +T). RMSE ranged from 1.1
to 1.6 GPa, and MAPE from 7 to 13 %. The best (lowest)
AIC was associated with the model in V2, ρ, and D.
The relationship between V2 and MOE was not strong

and considerable variation remained unexplained. The term
V2 explained only 36 % of the variance, while random fac-
tors explained a further 9 %. With V2 as the sole predictor,
RMSE and MAPE of the validation dataset (1.5 GPa and
11 %, respectively) were the worst of all models, and segre-
gation accuracy, as defined by TP rate, was just 46 %.
Diameter, as a predictor variable, recorded good accur-

acy metrics amongst the validation dataset. Prediction

Table 4 Performance metrics of linear models estimating MOE of standing trees. Italicised values indicate the recommended model;
bold values indicate the best value(s) in each column

Calibration dataset Validation dataset Comments

Fixed effectsa R2marg R2cond AIC RMSE MAPE TP rate RMSE MAPE TP rate

(GPa) (%) (%) (GPa) (%) (%)

V2 0.36 0.45 465 1.3 10 58 1.5 11 46

D 0.18 0.49 493 1.6 12 31 1.2 7 55

ρ 0.18 0.44 487 1.5 11 36 1.2 8 27

T 0.32 0.62 483 1.5 13 53 1.2 9 82 Best 1-variable

E 0.43 0.54 443 1.2 9 67 1.4 10 73

V2 + ρ 0.44 0.56 438 1.2 9 67 1.2 9 64 Similar to E

V2 + T 0.45 0.58 449 1.2 10 60 1.3 10 82

V2 + D 0.37 0.50 457 1.3 10 56 1.3 10 64

D + H 0.33 0.64 480 1.5 12 56 1.3 9 82 Similar to T

D + ρ 0.31 0.61 449 1.4 10 42 1.2 9 55

H + ρ 0.21 0.59 479 1.6 13 29 1.4 10 36

E + D 0.45 0.57 434 1.2 9 64 1.3 9 64

E + T 0.51 0.60 429 1.1 9 69 1.3 10 91

E + D + H 0.51 0.61 428 1.1 9 69 1.3 10 91

V2 + D + H 0.46 0.60 447 1.2 10 60 1.4 11 82

V2 + ρ + D 0.46 0.61 422 1.1 8 64 1.1 8 73 Best AIC

V2 + ρ + T 0.51 0.61 423 1.1 8 71 1.1 8 91 Best validation
aAll variables are as defined in Table 2
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accuracy with D was better than prediction accuracy with
V2. However, performance metrics amongst the calibration
dataset for D, particularly the explained variance, was poor
(R2marg 0.18).
The model in E (where E = V2.ρ) recorded the best

apparent performance amongst single-variable models
and would have been selected as the best single-
variable model had results been based solely on the
calibration dataset with no subsequent validation. How-
ever, better validation performance metrics were re-
corded for the model with taper as the sole predictor.
The model in taper recorded the best TP rate (82 %)

amongst the single-variable models. The rate was con-
siderably higher than TP rates of other single-variable
models (validation dataset). However, model perform-
ance and accuracy metrics of the calibration dataset
were less satisfactory. Similar accuracy metrics were
found for the model with D +H. The TP rate was great-
est (91 %) for two models: E + T and V2 + ρ + T. How-
ever, the latter model recorded better performance
metrics overall so was selected in favour of the former
for further analysis.
Plots of actual versus predicted tree MOE of four

selected models (V2, T, V2 + ρ +D, V2 + ρ + T) are pro-
vided in Fig. 1. The improved performance of two
models (V2 + ρ +D,V2 + ρ + T) is clearly visible, as is the
reason for the high TP rate (refer Eq. 5) of the taper
model with the validation dataset.

Recommended tree model
Based on the performance statistics of Table 4, and scatter
plots of Fig. 1, the model with V2 + ρ +T as predictor
variables is recommended for estimating tree MOE. Fixed
factors of the recommended model explained 51 % of the
variance and random factors an additional 10 %. Parameter
estimates of the recommended model, together with
standard errors, are given in Eq. 7.

MOE ¼ −1:363þ 0:2783V 2 þ 0:01294ρ−2:348T
Std: error 2:167ð Þ 0:0453ð Þ 0:00233ð Þ 0:554ð Þ ð7Þ

Estimates of the random effects associated with the
recommended model for predicting mean tree MOE were
0.23, −0.32, and 0.09 GPa for sites 803, 805, and 808, re-
spectively. Estimates of the random effects associated with
individual plots (nested within sites), ranged from −0.37 to
0.58 GPa, and are given in Table 5. The magnitude of ran-
dom effects estimates is relatively small in comparison to
the precision of the model of ±2.2 GPa (=1.96 × 1.1 GPa).

Models estimating bole MOE
Performance metrics for all valid bole models are shown
in Table 6. With the exception of three models for which
p values were less than 0.02 (V2 +H, T +A + ρ and E +D
+H), all other model variables listed in Table 6 were
highly significant (p < 0.001). The model in E + D +H
recorded the highest degree of dependency amongst

Fig. 1 Actual versus estimated mean tree MOE for four selected models (with fixed effects indicated at the top left of each cell). Calibration data
are shown in black, validation in red. The black line represents the line of equivalence. Parallel lines are spaced at 1.0-GPa intervals
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variables (VIF 1.9 for D). All other models had lower
dependencies (VIF less than 1.6).
The strength of the relationships, as assessed by R2

marg,
for estimating bole MOE ranged from 0.12 (for the
model in A) to 0.69 (V2 + ρ +D +A), a greater range than
that observed for the tree-level models. RMSE ranged
from 0.9 to 1.6 GPa, and MAPE from 6 to 12 %, similar
to the tree-level models. The best model, in terms of
AIC, was that in V2 + ρ +D +A.
Performance metrics of both validation and calibration

datasets indicated that V2 was a moderately good predictor

of bole MOE. Unlike the tree-level model, the apparent
performance of the model for estimating mean MOE of the
bole with V2 as the sole predictor was in agreement with
the performance of the model with the validation dataset.
The addition of ρ to the model (either as E = V2.ρ or
as V2 + ρ) increased TP rate for both datasets and, for the
validation dataset, TP increased from 73 % (V2 alone) to
91 % (V2 and ρ). With a marginally better AIC (372 in
comparison to 373), the model in V2 + ρ was determined
to be better than the model in E (V2.ρ).
Overall, the model in V2, ρ, D, and A recorded the best

performance metrics amongst the calibration dataset, and
relatively good metrics when validated; however, the sim-
pler model in V2 and ρ recorded better validation metrics.
Five models, all of which included V2 and ρ (either as a

linear combination or as a product, i.e. E), recorded the
highest TP rate of 91 %. All five models also recorded the
same RMSE (1.3 GPa) and MAPE (9 %) for the validation
dataset. Accuracy metrics of the calibration dataset were
very similar for E and V2 + ρ. Slightly improved accuracy
metrics were obtained with the three more complex models
(E +T, E +D +H, V2 + ρ +T) all with similar calibration
accuracy metrics.

Table 5 Random effects estimates for the recommended model
(Eq. 7) for estimating mean tree MOE (GPa)

Site 803 Site 805 Site 808

0.23 −0.32 0.09

Treatment Treatment within site effects

A −0.27 −0.37 −0.32

B 0.04 −0.17 0.28

D −0.12 0.08 0.10

E 0.58 0.11 0.04

Table 6 Performance metrics of linear models estimating MOE of boles. Italicised values indicate the recommended model; bold values
indicate the best value(s) in each column

Calibration dataset Validation dataset Comments

Fixed effectsa R2marg R2cond AIC RMSE MAPE TP rate RMSE MAPE TP rate

(GPa) (%) (%) (GPa) (%) (%)

V2 0.45 0.60 432 1.2 9 60 1.3 9 73

D 0.14 0.43 493 1.6 12 27 1.1 7 36

ρ 0.18 0.43 481 1.5 11 36 1.2 8 27

A 0.12 0.16 511 1.5 11 44 1.1 9 36

T 0.27 0.53 487 1.5 12 51 1.0 7 46

E 0.60 0.73 373 1.0 7 64 1.3 9 91 High TP rate

V2 + ρ 0.60 0.73 372 1.0 7 64 1.3 9 91 High TP rate

V2 + H 0.50 0.65 428 1.2 9 64 1.4 8 82

D + A 0.31 0.34 484 1.4 10 47 1.2 10 55

D + H 0.27 0.53 485 1.5 12 56 1.0 7 46

D + ρ 0.31 0.59 444 1.4 10 42 1.2 9 55

H + ρ 0.20 0.56 477 1.6 12 33 1.3 10 46

T + ρ 0.34 0.54 454 1.3 11 56 1.0 8 36

E + T 0.61 0.78 367 1.0 8 64 1.3 9 91 High TP rate

T + A + ρ 0.45 0.50 450 1.2 9 64 1.0 8 64

E + D + H 0.61 0.78 368 1.0 8 67 1.3 9 91 High TP rate

V2 + D + H 0.53 0.76 418 1.3 10 69 1.4 9 82

V2 + ρ + D 0.59 0.75 367 1.0 7 67 1.3 10 82

V2 + ρ + T 0.61 0.77 365 1.0 8 67 1.3 9 91 High TP rate

V2 + ρ + D + A 0.69 0.74 364 0.9 6 69 1.3 10 73 Best AIC
aAll variables are as defined in Table 2
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Plots of actual versus predicted bole MOE of four se-
lected models (V2, V2 + ρ, V2 + ρ +T, V2 + ρ +D +A) are
provided in Fig. 2. Improvements due to augmenting the
V2 model with ρ are clearly visible. Added benefits of
further augmentation of this model with T, or D and A, are
less apparent.

Recommended bole model
On the basis of the performance statistics of Table 6
and scatter plots of Fig. 2, V2 + ρ, with a precision of
about ± 2.0 GPa (=1.96 × 1.0 GPa), is the recommended
model for estimating bole MOE. Fixed factors of the
recommended model explained 60 % of the variance
and random factors an additional 13 %. Parameter esti-
mates, together with standard errors, of the recom-
mended model in V2 + ρ, for estimating bole MOE are
given in Eq. 8.

MOE ¼ −13:30 þ 0:7852V 2 þ 0:01681ρ
Std: error 1:71ð Þ 0:0600ð Þ 0:00191ð Þ ð8Þ

Estimates of the random effects associated with the
recommended model for predicting mean bole MOE
were 0.34, −0.53, and 0.19 GPa for sites 803, 805, and
808, respectively. Estimates of the random effects due to
treatment nested within site are given in Table 7.

Models estimating log MOE
Performance metrics of all valid log models are shown in
Table 8. All models comprised highly significant predictor
variables (p < 0.001). Values of VIF were less than 2.5 for
all but three models. The variable A had a VIF of 3.9 in
the model in D+ ρ + A, and 4.2 in the model in V2 + ρ +A
+D, while relative height and base diameter (H+D) each
had a VIF of 3.1. However, model behaviour was not com-
promised. Estimated MOE increased with increasing V2,
ρ, and A, and decreased with increasing D, H, and T.
The strength of the relationships, as assessed by R2

marg,
for estimating log MOE ranged from 0.02 (for the model
in D) to 0.64 (V2 + ρ +A +D). RMSE ranged from 1.1 to
1.9 GPa (the latter associated with the model in D), and
MAPE from 9 (for several models) to 15 % (the latter
also associated with the model in D).

Fig. 2 Actual versus estimated mean bole MOE for four selected models (with fixed effects indicated at the top left of each cell). Calibration data
are shown in black, validation in red. The black line represents the line of equivalence. Parallel lines are spaced at 1.0-GPa intervals

Table 7 Random effects estimates for the recommended linear
model (Eq. 8) for estimating mean bole MOE (GPa)

Site 803 Site 805 Site 808

0.34 −0.53 0.19

Treatment Treatment within site effects

A −0.14 −0.19 −0.10

B −0.06 −0.13 0.10

D −0.25 0.00 0.00

E 0.57 0.12 0.06
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From the above statistics, it is apparent that D is a
poor predictor of log MOE, even though it is highly
significant as a predictor variable. Furthermore, when
validated, all estimates of MOE were less than 11.0 GPa,
resulting in a TP rate of 0 %. Accuracy statistics for
relative height, H, were similarly poor, and when in com-
bination with V2, neither H (in the model V2 +H) nor D
(in the model V2 +D) was significant.
In contrast, model performance metrics indicated that

V2 was a moderately good predictor of mean log MOE
(RMSE 1.4 GPa, MAPE 11 %, TP rate 74 %, validation
dataset). With the addition of ρ, the performance of the
calibration model in V2 + ρ improved, and a small improve-
ment in MAPE of the validation dataset was also noted. In
terms of the validation dataset, no other model re-
corded better performance metrics.Plots of actual versus
predicted log MOE of four selected models (V2,V2 + ρ, E +
A, V2 + ρ +T) are provided in Fig. 3. Differences in model
performance are difficult to discern.

Recommended log model
On the basis of the performance metrics of the validation
dataset, the model in V2 + ρ, with a precision of about
±2.4 GPa (=1.96 × 1.2 GPa), is the recommended model
for estimating log MOE. Fixed factors of the recom-
mended model explained 53 % of the variance and
random factors an additional 8 %. Parameter estimates of
the recommended model, together with standard errors
are given in Eq. 9. The parameter estimate for the auto-
correlation structure was 0.847.

MOE ¼ −5:267 þ 0:8126V 2 þ 0:006693ρ
Std: error 1:201ð Þ 0:0415ð Þ 0:001060ð Þ ð9Þ

Estimates of the random effects associated with the rec-
ommended model (V2 + ρ) for predicting mean log MOE
were 0.26, −0.49, and 0.23 GPa for sites 803, 805, and 808,
respectively. Estimates of the random effects due to treat-
ment nested within site were minimal, ranging from −0.07

Table 8 Performance metrics of linear models estimating MOE of logs. Italicised values indicate the recommended model; bold
values indicate the best value(s) in each column

Calibration dataset Validation dataset Comments

Fixed effectsa R2marg R2cond AIC RMSE MAPE TP rate RMSE MAPE TP rate

(GPa) (%) (%) (GPa) (%) (%)

V2 0.43 0.63 1513 1.3 10 61 1.4 11 74 Best 1-variable

D 0.02 0.46 1695 1.9 15 2 1.7 14 0 Worst

H 0.06 0.58 1647 1.8 14 0 1.7 13 0

A 0.09 0.55 1649 1.7 14 21 1.6 13 17

E 0.51 0.57 1501 1.2 10 64 1.4 10 62

V2 + ρ 0.53 0.61 1485 1.2 9 67 1.4 10 74 Best validation

V2 + T 0.44 0.64 1498 1.3 10 62 1.4 11 71

V2 + A 0.43 0.63 1509 1.3 10 61 1.4 11 71

E + D 0.53 0.65 1471 1.2 9 64 1.4 10 60

E + T 0.54 0.59 1480 1.2 9 64 1.4 11 57

E + A 0.62 0.69 1424 1.1 9 71 1.4 10 69 Best equal AIC

E + H 0.56 0.69 1436 1.2 9 64 1.4 10 67

A + T 0.12 0.53 1636 1.7 14 33 1.5 12 36

A + ρ 0.12 0.56 1645 1.7 13 27 1.6 13 21

H + ρ 0.08 0.62 1638 1.8 14 22 1.7 13 12

D + A 0.25 0.54 1621 1.6 13 39 1.6 13 45

D + H 0.13 0.60 1626 1.7 14 19 1.6 13 21

D + ρ + H 0.17 0.62 1610 1.7 13 27 1.7 13 26

D + ρ + A 0.31 0.54 1611 1.5 12 45 1.6 13 50

V2 + ρ + D 0.54 0.67 1469 1.2 9 67 1.4 10 69

V2 + ρ + T 0.56 0.67 1459 1.2 9 68 1.4 11 74 Similar to V2

V2 + ρ + A 0.63 0.70 1425 1.1 9 73 1.4 11 69

V2 + ρ + H 0.55 0.69 1439 1.2 9 65 1.4 11 69

V2 + ρ + A + D 0.64 0.70 1424 1.1 9 70 1.5 11 69 Best equal AIC
aAll variables are as defined in Table 2

Todoroki and Lowell New Zealand Journal of Forestry Science  (2016) 46:11 Page 11 of 15



to 0.06, while those due to individual trees were consider-
ably greater. Within-plot tree-to-tree variation in MOE
ranged from 0.8 to 2.5 GPa. Random effects estimates are
given for site and plot in Table 9. Random effects due to in-
dividual trees were too numerous to list, hence minimum,
mean, and maximum values are provided in the table.

Discussion
Random effects of the recommended model for estimating
log MOE (with V2 and ρ as predictors) indicated high levels
of tree-to-tree variation within plots (with differences of up
to 2.5 GPa; refer Table 9, plot D, site 803), minimal levels of

variation between plots (all close to zero), and modest levels
of variation between sites (0.3, −0.5, and 0.2 GPa for sites
803, 805, and 808, respectively). This suggests, though not
conclusively, that the models may be highly transportable
across a variety of thinning treatments, and to a lesser
extent, transportable across sites. The former suggestion is
also supported by the accuracy metrics of the validation
dataset, for which the logs were derived from plots thinned
under a different regime. The latter suggestion needs to be
investigated further because the sites used in this study
were relatively similar in terms of mean annual temperature
(9–11 °C), but differed in terms of mean annual precipita-
tion (with a range of 110 to 336 mm per year).
All three recommended models for estimating tree, bole,

and log MOE, included V2 and ρ as predictor variables.
The tree-level model also included taper. As taper in-
creases (as can be caused by heavy thinning regimes), tree
MOE is predicted to decrease (Eq. 7). While the addition
of taper to the recommended bole-level model improved
the apparent performance of the model (refer Table 6),
there was no improvement in external accuracy metrics.
Further validation with additional external datasets is re-
quired to determine if taper improves model performance.
Fixed effects of the three recommended models explained

51–60 % of the variation in MOE, and random effects a
further 8–10 %. The unexplained variation could be due to
other factors, such as knots, bark, and other wood defects
not examined here. Moisture content may also have been a
contributing factor. Moisture content of Douglas-fir timber

Fig. 3 Actual versus estimated mean log MOE for four selected models (with fixed effects indicated at the top left of each cell). Calibration data
are shown in black, validation in red. The black line represents the line of equivalence. Parallel lines are spaced at 1.0-GPa intervals

Table 9 Random effects estimates for the recommended model
(Eq. 9) for estimating mean log MOE (GPa)

Site 803 Site 805 Site 808

0.26 −0.49 0.23

Treatment Treatment effects

A −0.03 −0.07 −0.05

B 0.06 0.01 0.03

D −0.06 0.01 0.03

E 0.05 0.00 0.01

Tree effects (min, mean, max)

A (−0.58, −0.08, 0.91) (−1.03, 0.17, 1.22) (−0.97, −0.15, 0.70)

B (−0.57, 0.12, 0.72) (−0.84, −0.19, 0.25) (−0.99, 0.03, 0.68)

D (−1.62, 0.03, 0.86) (−0.42, 0.01, 0.40) (−0.47, −0.13, 0.31)

E (−0.49, 0.06, 0.43) (−0.38, 0.08, 0.43) (−0.98, 0.03, 1.17)
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when green is about 45 % (Rietz 1999) and values of 24 %
are typical for air-dried timber. Though the latter moisture
content, which was used in this study, may appear to be
high, it should be noted that “Douglas-fir is unique among
all softwood species in that it is naturally dimensionally
stable, having the ability to season well in position. Many
builders prefer to cut, nail and fasten Douglas-fir in the
“green” or unseasoned condition, allowing it to air dry dur-
ing construction” (WWPA 2002). Therefore, the MC values
used in this study are accepted values, and appropriate.
Beyond wood-related factors, further variation could be
due to human factors associated with application of the
acoustic tools. For example, Paradis et al. (2013) demon-
strated that acoustic velocities are sensitive to probe depth,
with increased acoustic velocity (of about 0.25 km s−1) asso-
ciated with increased penetration depth (from 1.5 cm to
3.0 cm); therefore, with a team of people facilitating data
collection, it is highly possible that there was variation
amongst operators. However, the somewhat lower acoustic
velocity of logs in this study, in comparison to those
reported by Wang et al. (2013), are thought to be due to
age differences of the study trees, with velocity, and MOE,
being lower for younger trees.
The RMSE values obtained indicate that MOE estimates

will be within about ±2 GPa of the actual mean value,
95 % of the time. The MAPE values indicate that predic-
tion accuracy will be, on average, out by about 10 %. The
TP rates indicate that, of those trees, boles, and logs that
meet or exceed the 11.0 GPa threshold, at least 64 % will
be correctly segregated as high MOE wood products.
There will, however, also be some low MOE material that
will be incorrectly classified as high MOE. From Figs. 1, 2,
and 3, we note that these, the “False Positives”, were re-
assuringly, relatively few in number. There were also few
“False Negatives” (refer figures).
The TP rate threshold value of 11.0 GPa was somewhat

arbitrary although based on the recommended tree breed-
ing value of 11 GPa. This begets the question of how to
deal with differing threshold levels. One approach would be
to extend the confusion matrix approach to differing
threshold values, and, for each threshold, plot the resulting
receiver operating characteristics (ROC) graph depicting
the relative trade-offs between benefits (true positives) and
costs (false positives) (Fawcett 2006). Comparison of the
ROC graphs may then provide further insight regarding
model applicability and transportability.
The apparent performance of standing-tree time-of-flight

velocity predictions of MOE was optimistic, and tests with
the external validation dataset were disappointing. External
validation indicated that predictions based on time-of-flight
were less accurate than predictions based on diameter.
Standing-tree time-of-flight velocity predictions were also
less accurate than resonance velocity predictions of bole
MOE. R2marg was 0.45 and 0.60, and TP rate of the

validation dataset 46 and 73 % for the respective models.
However, augmentation of standing tree time-of-flight by
wood density and tree taper improved accuracy metrics
(R2marg was 0.51 and TP rate 91 %) to those comparable to
the better bole-level models.
In log-level models, MOE decreased with increasing rela-

tive height. This is consistent with results found by Wang
et al. (2013) for log position. However, with predictions at
the population level, we found R2marg to be just 0.06, while
R2cond was 0.58, similar to the value of 0.59 found by Wang
et al. (2013). We note that if MOE had been predicted from
relative height at the optimal level (i.e. not the population
level) and a simple linear relationship formed between
actual and predicted MOE, a R2, and R2adj, of 0.74 would
result. These pseudo-R2 values are clearly overly optimistic,
thus for random effects models we recommend the use of
the two R2 variates (marginal R2 and conditional R2) re-
cently developed by Nakagawa and Schielzeth (2013) and
extended by Johnson (2014).

Conclusions
A model with a good accuracy metric does not necessarily
equate to good forecast accuracy as models tend to perform
better on the data on which the model was developed
rather than on new data. Therefore, due consideration must
be given to the importance of external validation.
For accuracy in MOE estimation and tree segregation,

knowledge of velocity alone is insufficient. Knowledge of
wood density is also required for improved accuracy.
Taper is also important to predicting tree MOE, and this
study suggests that it may possibly be important to ac-
curate prediction of bole MOE. Further validation with
new data is required.
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