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Abstract

Background: In fast-growing forests such as Eucalyptus plantations, the correct determination of stand productivity is
essential to aid decision making processes and ensure the efficiency of the wood supply chain. In the past decade,
advances in remote sensing and computational methods have yielded new tools, techniques, and technologies that
have led to improvements in forest management and forest productivity assessments. Our aim was to estimate and
map the basal area and volume of Eucalyptus stands through the integration of forest inventory, remote sensing,
parametric, and nonparametric methods of spatial prediction.

Methods: This study was conducted in 20 5-year-old clonal stands (362 ha) of Eucalyptus urophylla S.T.Blake x Eucalyptus
camaldulensis Dehnh. The stands are located in the northwest region of Minas Gerais state, Brazil. Basal area and volume
data were obtained from forest inventory operations carried out in the field. Spectral data were collected from a Landsat
5 TM satellite image, composed of spectral bands and vegetation indices. Multiple linear regression (MLR), random forest
(RF), support vector machine (SVM), and artificial neural network (ANN) methods were used for basal area and volume
estimation. Using ordinary kriging, we spatialised the residuals generated by the spatial prediction methods for the
correction of trends in the estimates and more detailing of the spatial behaviour of basal area and volume.

Results: The ND54 index was the spectral variable that had the best correlation values with basal area (r = − 0.91) and
volume (r = − 0.52) and was also the variable that most contributed to basal area and volume estimates by the MLR and
RF methods. The RF algorithm presented smaller basal area and volume errors when compared to other machine
learning algorithms and MLR. The addition of residual kriging in spatial prediction methods did not necessarily result in
relative improvements in the estimations of these methods.

Conclusions: Random forest was the best method of spatial prediction and mapping of basal area and volume in the
study area. The combination of spatial prediction methods with residual kriging did not result in relative improvement of
spatial prediction accuracy of basal area and volume in all methods assessed in this study, and there is not always a
spatial dependency structure in the residuals of a spatial prediction method. The approaches used in this study provide a
framework for integrating field and multispectral data, highlighting methods that greatly improve spatial prediction of
basal area and volume estimation in Eucalyptus stands. This has potential to support fast growth plantation monitoring,
offering options for a robust analysis of high-dimensional data.
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Background
The Brazilian forestry sector represents an important
share of the products, taxes, jobs, and income generation
of the country and accounts for 3.5% of the national
GDP (IBÁ 2015). This is in large part due to the success-
ful establishment of fast-grown plantations of Eucalyptus
species, which currently occupy around 5.6 million
hectares (71.9% of the total planted forest area in Brazil)
and represent 17% of the harvested wood in the world
(IBÁ 2014, 2015).
The Eucalyptus genus has more than 500 species, and a

subset of these are used in fast-growing plantations (Barrios
et al. 2015), commonly located in tropical and sub-tropical
regions, and more recently in temperate regions. Spain
(González-García et al. 2015), Portugal (Lopes et al. 2009),
Uruguay (Barrios et al. 2015), Chile (Watt et al. 2014),
South Africa (Dye et al. 2004), Australia (Verma et al.
2014), and the USA (Wear et al. 2015) are some examples
of productive Eucalyptus plantations in temperate regions
that have cutting cycles ranging from 8 to 12 years. In trop-
ical regions such as Brazil, the cutting cycles of Eucalyptus
plantations range from 5 to 7 years (Guedes et al. 2015,
Scolforo et al. 2016).
Timber production is the main ecosystem service of

planted forests and the main management objective for
these plantations (Gao et al. 2016). In the case of fast-
growing plantations, the correct determination of stand
productivity is essential to support forest management
planning strategies (González-García et al. 2015, Retslaff
et al. 2015). Traditionally, productivity assessments of a
plantation are carried out based on field measurements
of the diameter at breast height (DBH) and tree height
via forest inventory. However, in fast-growing planta-
tions, field-based inventory programmes may not be
sufficient to capture productivity differences across the
entire area, such as those arising from losses due to pest and
disease attacks (Coops et al. 2006), or from climatic anomal-
ies (González-García et al. 2015, Scolforo et al. 2016).
In the past decade, advances in geographical informa-

tion systems (GIS), global positioning systems (GPS),
and remote sensing have provided new tools, techniques,
and technologies to support forest management. Thus,
low-cost and accurate forest productivity assessment can
be made, as well as allowing the collection of information
in areas not sampled by forest inventory (Morgenroth and
Visser 2013). The analysis of remote sensing information
combined with field data has been used by several authors
to fill the information gap left by data collected only in the
field (Watt et al. 2016, Boisvenue et al. 2016, Moreno et al.
2016, Fayad et al. 2016, Vicharnakorn et al. 2014). Ponzoni
et al. (2015) used data collected from Landsat 5 thematic
mapper (TM) images for spectral-temporal characterisa-
tion of Eucalyptus canopies. Berra et al. (2012) estimated
the volume of a Eucalyptus plantation in the southern

region of Brazil from Landsat 5 TM images. Canavesi et
al. (2010) used hyperspectral data from the Hyperion EO-
1 sensor for the volume estimation of Eucalyptus planta-
tions under different relief conditions. The results found
by these authors corroborate the potential use of data col-
lected by remote sensing to estimate the productivity of
Eucalyptus plantations.
In parallel to the advances in remote sensing, compu-

tational techniques, such as machine learning algorithms
(MLA), have been increasingly used to model spectral
and biological data. These techniques overcome the
difficulties of classical statistical methods such as spatial
correlation, non-linearity of data, and overfitting (Were
et al. 2015). In addition, these algorithms allow the use
of categorical data, with statistical noise and incomplete
data, and therefore are able to address needs under
different dataset scenarios (Breiman 2001).
Several studies have shown the superiority of machine

learning algorithms in relation to classical statistics in
several areas, such as in forest management. For
instance, Ahmed et al. (2015) modelled a Landsat time-
series data structure in conjunction with LiDAR data
and found that the random forest algorithm achieved
better results than multiple regression for all forest
classes. In another study, García-Gutiérrez et al. (2015)
found that machine learning algorithms (mainly support
vector machine) were superior for modelling a range of
forest variables (viz., aboveground biomass, basal area,
dominant height, mean height, and volume) compared
with multiple linear regression. Machine learning algo-
rithms have also been shown to provide an economical
and accurate way to estimate aboveground biomass in
forests from Landsat satellite images (Wu et al. 2016).
These studies highlight the benefits of applying more
robust techniques in solving problems previously
resolved by traditional statistical modelling.
In this context, the aims of this study were: (i) to esti-

mate and map basal area and volume of a Eucalyptus
plantation through the integration of forest inventory,
remote sensing, and parametric and nonparametric
methods of spatial prediction; (ii) to compare the per-
formance of machine learning algorithms (random
forest, support vector machine, and artificial neural net-
works) with the linear regression model; and (iii) to
assess the improvement in basal area and volume esti-
mation with the addition of residual kriging in spatial
prediction methods.

Methods
Study area
The study area is located in Minas Gerais state, the fourth
largest state in Brazil, with an area of 586,521 km2. Minas
Gerais state has the largest area occupied by plantations of
the Eucalyptus genus in the country (1,400,232 ha),
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corresponding to 25.2% of Brazilian Eucalyptus planta-
tions. The wood from these plantations is mainly used for
the production of charcoal, as well as pulp, lumber, and
panels (IBÁ 2015).
The Eucalyptus clonal stands under study are located

in Lagoa Grande municipality, in the northwest of Minas
Gerais state (lat. 17° 43′ 00″ S–17° 44′ 00″ S, long. 46°
32′ 00″ W–46° 33′ 00″ W, elevation 560 m a.s.l.)
(Fig. 1). According to the Köppen climatic classification
system, the climate in this region is Aw, classified as a
tropical savanna climate, with drier months during the
winter, high annual precipitation in the summer and
average temperature of all months greater than 18 °C
(Alvares et al. 2013). The average annual rainfall and the
average monthly rainfall of the dry and wet seasons are
1430, 8, and 257 mm, respectively.

Field data description and sampling
This study was undertaken in a set of 20 clonal stands of
Eucalyptus urophylla S.T.Blake x Eucalyptus camaldulensis
Dehnh, totalling an area of 362.2 ha. These stands were
planted in April and May 2004, with initial spacing of either
3 × 2 m or 3 × 3 m. The forest inventory was carried out in
June and July 2009 on a set of 35 georeferenced square
plots of 400 m2. The plots were georeferenced in the field
with GPS (Garmin 60CSx, Garmin Ltd., Olathe, Kansas,
USA). The sampling procedure adopted was systematic,
allocating approximately one plot per 10 ha of forest. In
each plot, the diameter at breast height (DBH) of all stems
was measured, as well as the total height of the first 15 trees
with normal stems (without bifurcation or any other defect)
and height of dominant trees (the 100 largest diameter trees
per hectare). Descriptive statistics of the variables collected
in the field are shown in Table 1. Estimates of basal area

(m2 ha−1), and total stem volume (m3 ha−1) were obtained
from the information collected in the plots.

Remote sensing data and processing
Spectral data were obtained from a Landsat 5 TM satellite
image, with spatial resolution of 30 m, on the date of June
25, 2009, corresponding with field data collection, in orbit
220, point 072, in bands TM1 (0.45–0.52 μm), TM2
(0.52–0.60 μm), TM3 (0.63–0.69 μm), TM4 (0.76–0.90 μm),
TM5 (1.55–1.75 μm), and TM7 (2.18–2.35 μm). The
Landsat 5 TM Surface Reflectance Climate Data Record
(CDR) was used, which is a Landsat Level-2A product gener-
ated by the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS) (Masek et al. 2006) obtained
from the USGS (United States Geological Survey) database
(USGS 2017). These images already contain radiometric
calibration, and geometric and atmospheric corrections.
In addition, vegetation indices using the red, near infra-

red and short wave infrared spectral bands of Landsat 5
TM (Table 2) were calculated, as described by Lu et al.
(2004) and Ponzoni et al. (2012). The normalised differ-
ence vegetation index (NDVI) is the most widely used
vegetation index for retrieval of forest biophysical parame-
ters (Rouse et al. 1973, Lu et al. 2004). The soil-adjusted
vegetation index (SAVI) and modified soil-adjusted vege-
tation index (MSAVI) are soil adjusted vegetation indices
used to reduce the effect of soil background reflectance
(Qi et al. 1994). The enhanced vegetation index (EVI) was
developed to optimise the vegetation signal, correcting
reflected light distortions caused by particulate matter sus-
pended in the air, as well as by influence of background
data under the vegetation canopy (Justice et al. 1998). The
global environment monitoring index (GEMI) minimises
atmospheric effects, similar to the EVI and minimises

Fig. 1 Geographic location of the Eucalyptus stands and sampling grid

dos Reis et al. New Zealand Journal of Forestry Science  (2018) 48:1 Page 3 of 17



observational angular effects in the observed vegetation
index signal (Pinty and Verstraete 1992).

Dataset integration
The choice of an appropriate pixel size is one of the issues
to be considered when using remote sensing data to esti-
mate dendrometric characteristics. Due to easy accessibil-
ity and affordability, a number of studies have employed
Landsat images and found statistically significant correla-
tions between remotely sensed data and dendrometric
characteristics using ground plots ranging from 315 to
2500 m2 (Dube and Mutanga 2015, López-Sánchez et al.
2014, Zhang et al. 2014, López-Serrano et al. 2016).
Although the size of a single plot (20 × 20 m) in this

study does not cover a Landsat pixel, we considered that
a plot represents an area larger than its size. As the
sampling design was one plot per hectare, we ensured
that each plot matched with the reference pixel in order
to extract reliable data.

Spatial modelling and prediction methods
Exploratory data analysis
Spectral response was extracted from the Landsat TM
bands and vegetation indices from the geographical
coordinates of the forest inventory plots. Thus, the plot
database was composed of basal area (m2 ha−1), volume
(m3 ha−1), spectral band values, and vegetation index
values. The total database (35 plots) was systematically

divided into two datasets: prediction or fitting set (70%
of the database) and validation set (30% of the database).
Therefore, 25 plots were used for basal area and volume
predictions, and 10 plots were used for validation of the
different approaches to estimate basal area and volume
in the Eucalyptus stands under study.
Pearson correlation analysis was carried out among

basal area, volume, values of spectral bands, and vegeta-
tion indices. From these correlations, the relationship
between the dendrometric characteristics of Eucalyptus
stands and its spectral response in Landsat images was
explored.

Multiple linear regression (MLR) analysis
Basal area and volume estimation were accomplished
through MLR analysis. A stepwise variable elimination
method was used in conjunction with the Akaike infor-
mation criterion (AIC) to select only those spectral vari-
ables that “best” explained basal area and volume
variation. The residuals from regression models were
analysed to assess the existence of trends in the errors.
The variance inflation factor (VIF) was used to detect
possible correlations between explanatory variables
(multicollinearity). The adopted VIF cutoff value was 10.

Random forest (RF)
The RF algorithm, initially proposed by Breiman (2001),
is an ensemble method that generates a set of individu-
ally trained decision trees and combines their results.
The greatest advantage of these decision trees as regres-
sion methods is that they are able to accurately describe
complex relationships among multiple variables, and by
aggregating these decision trees, more accurate solutions
are generated (Gleason and Im 2012). In addition to
these characteristics, RF is an easy parameterisation
method (Immitzer et al. 2012). This method has shown
great potential in regression studies with integration of
spectral data, in some cases generating better results

Table 1 Descriptive statistics of the variables collected in the field

Statistic DBH H Hd

Minimum 11.98 16.98 19.40

Maximum 15.45 24.63 26.38

Mean 14.02 21.18 22.98

Standard deviation 0.85 2.33 1.92

DBH diameter at breast height (cm), H total height (m), Hd dominant
height (m)

Table 2 Vegetation indices used in the spectral characterisation of the Eucalyptus stands

Vegetation indices Formulation Reference

NDVI (TM4 − TM3)/(TM4 + TM3) Rouse et al. (1973)

ND53 (TM5 − TM3)/(TM5 + TM3) Huete et al. (2002)

ND54 (TM5 − TM4)/(TM5 + TM4) Huete et al. (2002)

ND57 (TM5 − TM7)/(TM5 + TM7) Huete et al. (2002)

SAVI [(TM4 − TM3)/(TM4 + TM3 + 0.5)].(1.5) Huete (1988)

MSAVI 2TM4þ 1ð Þ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TM4þ 1ð Þ2−8 TM4−2TM3ð Þ

q� �
=2 Qi et al. (1994)

EVI 2.5 × [(TM4 − TM3)/(TM4 + 6TM3 − 7.5TM1 + 1)] Justice et al. (1998)

GEMI n(1 − 0.25n). [(TM3 − 0.125)/(1 − TM3)]

n ¼ 2 TM42−TM32ð Þþ1:5TM4þ0:5TM3
TM4þTM3þ0:5

Pinty and Verstraete (1992)

TM thematic mapper, ND normalised difference, NDVI normalised difference vegetation index, SAVI soil-adjusted vegetation index, MSAVI modified soil-adjusted
vegetation index, EVI enhanced vegetation index, GEMI global environment monitoring index
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than conventional techniques (Stojanova et al. 2010,
Dube et al. 2014, García-Gutiérrez et al. 2015, Görgens
et al. 2015, Wu et al. 2016). The RF algorithm fitted in
this study is implemented in the open-source software
WEKA 3.8 (Frank et al. 2016). Tests were carried out
with the exchange of tree numbers and attribute num-
bers to be drawn. Then, 20 trees with 10 attributes to be
drawn by node for basal area and 80 trees and 11 attri-
butes for volume were fixed.

Support vector machine (SVM)
SVMs operate by assuming that each set of inputs will
have a unique relation to the response variable and that
the grouping and the relation of these predictors to one
another is sufficient to identify rules that can be used to
predict the response variable from new input sets. For
this, SVMs project the input space data into a feature
space with a much larger dimension, enabling linearly
non-separable data to become separable in the feature
space. This method has been successfully used in
forestry classification problems (Huang et al. 2008, Shao
and Lunetta 2012) and more recently in regression prob-
lems with the use of spectral data (García-Gutiérrez et
al. 2015, Wu et al. 2016). The Kernel function used in
the present study was the Gaussian or radial basis func-
tion (RBF). The algorithm used is implemented in
WEKA 3.8 software under the sequential minimal
optimization (SMO) function. Values of parameters C
and σ (bandwidth or influence range of each training
point in the RBF) were tested within the interval (10i)i =
− 3, − 2, − 1, 0, 1, 2, 3, where the least squared mean error
configuration was chosen for application. For basal area
and volume, selected C and σ values were 10 and 0.1,
and 100 and 0.01, respectively.

Artificial neural networks (ANNs)
ANNs are a parallel-distributed information processing
system that simulates the working of neurons in the hu-
man brain, being able to learn from examples. Artificial
neural networks are widely used to model complex and
non-linear relations between inputs and outputs or to
determine patterns in data (Diamantopoulou 2012). The
use of this technique in conjunction with remote sensing
data is consolidated in several studies (Cluter et al. 2012,
García-Gutiérrez et al. 2015, Rodriguez-Galiano et al.
2015, Were et al. 2015). We used the ANN obtained by
running the Multilayer Perceptron function (of the
multilayer perceptron type) provided by WEKA 3.8 soft-
ware. The training of neural networks occurred through
the back-propagation algorithm, which fit the weights of
all the layers of the network from the backpropagation
of the error, obtained in the output layer. The weights
updating was carried out according to the error, learning
rate, and momentum terms (Delta rule). The sigmoidal

activation function was employed in all neurons. Deter-
mined by previous tests, ANNs were structured with 14
neurons in the input layer (number of variables), 1
neuron in the hidden layer, and 1 neuron in the output
layer, corresponding to estimated basal area or volume.
The learning rate, the momentum term, and iteration
numbers were fixed at 0.3, 0.5, and 500 for basal area,
and 0.2, 0.7, and 500 for volume, respectively.

Relative importance evaluation
The variable importance was assessed for each model
with a removal-based approach in order to avoid the
limited interpretability of the MLA and to verify how
each independent variable contribute to the performance
of machine learning algorithms (RF, SVM, and ANN).
All algorithms were adjusted n times, with n being the
number of available variables. At each time, one variable
was removed from the training set and then the root
mean square error (RMSE) of the algorithm was quanti-
fied. At the end, the obtained errors were normalised by
the ratio of the largest RMSE so that they were between
0 and 1 and multiplied by 100 (Were et al. 2015). The
variable that results in the highest RMSE when removed
from the database is the variable with the highest rela-
tive importance within the model. This methodology
was chosen because it can be consistently applied to all
algorithms, allowing comparisons of variable contribu-
tion between the methods.

Geostatistical modelling of prediction methods errors
Spatial prediction methods capture the average behaviour
of the main variable, allowing the identification of its
general spatial behaviour, without detailing more specific
areas or regions. For details of specific regions, estimates
obtained exclusively from the auxiliary variables need to
be corrected. Thus, residuals generated by spatial predic-
tion methods (MLR, RF, SVM, and ANN) were used for
the correction of trends in the estimates and for detailing
the spatial behaviour of the main variables (basal area and
volume) using ordinary kriging. The interpolated values of
the residuals were then added to the estimates of the
spatial prediction methods (MLR, RF, SVM, and ANN).
Thus, we obtained the basal area and volume estimates
corrected by the ordinary kriging of the residuals for each
spatial prediction method.
For the application of ordinary kriging to the spatial

prediction method residuals, we considered the station-
arity presupposition of the intrinsic hypothesis (Journel
and Huijbregts 1978), through fitting of theoretical func-
tions to experimental semivariogram models. Spherical,
exponential, and Gaussian models were fitted to the
semivariogram of the residuals from each spatial predic-
tion method using weighted least squares. The semivar-
iogram parameters (nugget (τ2), sill (σ2), and range (ϕ))
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were calculated from the best fitted models, which pro-
vided information about the spatial structure as well as
input parameters for the kriging interpolation. The nug-
get represents the minimum semivariance among differ-
ent sampling intervals. Nugget values greater than zero
represent a combination of experimental error and of
unresolved spatial variability occurring at scales smaller
than inter-sampling lag distance. Sill is the plateau
reached by the values of semivariance and indicates the
amount of variation than can be explained by the spatial
structure of the data. Range is the distance at which the
semivariogram reaches the plateau, indicating the dis-
tance which values are spatially correlated. The evalu-
ation of the performance of each semivariogram model
and the selection of the best models were based on
cross-validation, which estimates the reduced average
error (RAE) and the standard deviation of the reduced
average error (SRE) (Yamamoto and Landim 2013).

Validation and assessment of the prediction methods
The different approaches to basal area and volume esti-
mation of Eucalyptus stands were evaluated by compar-
ing the basic statistics of the predicted maps (mean and
standard deviation) with the estimates obtained from the
forest inventory, and through the discrepancies between
observed and predicted values in the fitting and valid-
ation datasets. These discrepancies were evaluated using
the mean error (ME), the mean absolute error (MAE),
and the root mean square error (RMSE), as described in
Eqs. 1–3.

ME ¼ 1
N

XN

i¼1
Xi−X̂ i
� � ð1Þ

MAE ¼ 1
N

XN

i¼1
Xi−X̂ i

�� �� ð2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
Xi−X̂ i
� �2r

ð3Þ

where N is the number of values in the dataset; X̂ i is the
estimated value of the main variable; Xi is the observed
value in the prediction and validation sets.
The relative improvement (RI) achieved by residual

kriging for a particular spatial prediction method was
calculated by comparing the change in RMSE when the
residual kriging was applied using Eq. 4.

RI ¼ RMSEspm−RMSEspm‐RK

RMSEspm
� 100% ð4Þ

where RMSEspm is the root mean square error of a
spatial prediction method, RMSEspm ‐ RK is the root mean
square error of the spatial prediction method when
residual kriging is added to this method.

Data analysis for this study was performed using
the following software: R (R Core Team 2016) with
the geoR package (Ribeiro Júnior and Diggle 2001),
WEKA 3.8 (Frank et al. 2016), and ArcGis version
10.1 (Esri 2010) with Geostatistical Analyst extension
(Esri 2010).

Results
Descriptive statistic of the measured basal area and
volume
Basal area ranged from 10.07 to 21.63 m2 ha−1, with
average of 16.86 m2 ha−1 and standard deviation of
2.4 m2 ha−1 (Table 3). The average volume was
169.34 m3 ha−1 with a standard deviation of 29.66 m3 ha
−1 and range from 95.80 up to 213.85 m3 ha−1. Basal area
had a lower coefficient of variation (CV = 14.26%) com-
pared to volume (CV = 17.51%), demonstrating a consid-
erable homogeneity of this dendrometric characteristic
in the evaluated Eucalyptus stands.

Correlation among basal area, volume, spectral bands,
and vegetation indices
The correlation between plot basal area and the different
spectral bands and their ratios (Table 4) ranged from − 0.91
(ND54) to 0.15 (TM2). The SAVI, MSAVI, GEMI, and EVI
were also highly correlated with basal area (r > 0.85). The
correlation between plot volume and the spectral bands
and ratios ranged from − 0.52 (ND54) to − 0.02 (TM2).
The NDVI (r = 0.49) and SAVI (r = 0.47) also had high
correlations with volume, but these were lower in
magnitude when compared with those for basal area.
Many of the spectral bands and ratios were also
highly correlated with each other (r > 0.90), which can
be considered a drawback due possible to multicolli-
nearity problems in linear regression models.

Table 3 Descriptive statistics obtained from forest inventory
processing using the estimators of simple random sampling
(SRS)

Estimators Basal area Volume

(m2)a (m2 ha−1) (m3)a (m3 ha−1)

Minimum 0.91 10.07 8.62 95.80

Maximum 1.95 21.63 19.25 213.85

Mean 1.52 16.86 15.24 169.34

Standard deviation 0.22 2.4 2.67 29.66

Coefficient of variation (%) 14.26 17.51

Sampling error (%) 4.89 6.00

Total confidence interval 5807.9–6405.0 57,652.7–65,018.7
aEstimates obtained for an area of 900 m2 (corresponding to the area of each
pixel of the Landsat images)
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Spatial prediction of basal area and volume by MLR, RF,
SVM, and ANN
The spectral data examined had several significant corre-
lations with the basal area and volume data (Table 4).
However, they contributed in a reduced form to the
regression models due to multicollinearity problems,
which resulted in final regression models with few
significant explanatory variables (Table 5). The basal area
model only included the ND54 vegetation index
(Table 5), while the volume model included the TM1
band and NDVI. The coefficient of determination was
high for the basal area model (R2 = 0.81), but was much
lower for the volume model (R2 = 0.37).
In the case of basal area and volume predictions using

machine learning algorithms, the increases in RMSEs
when the predictors were excluded one by one from the
SVM, ANN, and RF models are shown in Fig. 2. The
variable ranking by relative importance differed for each
algorithm. The ND54 index, chosen for basal area model
by the MLR, also had the greatest effect on the accuracy
of the RF model, both for basal area and volume. The
TM2 band had the highest relative importance for the

ANN and SVM models of both basal area and volume.
The TM1 band, selected by the MLR for volume estima-
tion, also had high importance in the ANN and SVM
models of volume.
Comparisons of measured values and estimated values

of basal area (Fig. 3) showed that basal area was under-
estimated by the ANN model (Fig. 3d). The model fitted
using the RF algorithm produced values of basal area
that were in closer agreement with measured values
(Fig. 3b). Similar results were seen for the volume
models, but with a slight overestimation for the plots
with small volumes and an underestimation of the plots
with high volumes. The model fitted using ANN
algorithm did not produce estimates of volume that
were consistent with measured values (Fig. 3h). The
models fitted using the MLR and SVM (Fig. 3e, g) algo-
rithms produced predicted values that were more closely
related to the measured values than those from the
ANN algorithm.
Prediction and validation sets of basal area and volume

were compared by means of Student’s t test, in order to
check if they provided unbiased subsets of the original

Table 4 Pearson’s correlation coefficient (r) among basal area, volume, and spectral data for the Eucalyptus stands

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1. G 1.00

2. V 0.70* 1.00

3. TM1 − 0.24ns 0.10ns 1.00

4. TM2 0.15ns − 0.02ns 0.59* 1.00

5. TM3 − 0.20ns − 0.10ns 0.80* 0.72* 1.00

6. TM4 0.82* 0.41* − 0.05ns 0.43* 0.12ns 1.00

7. TM5 − 0.66* − 0.36ns 0.53* 0.31ns 0.68* − 0.40* 1.00

8. TM7 − 0.68* − 0.40* 0.56* 0.32ns 0.66* − 0.42* 0.90* 1.00

9. NDVI 0.83* 0.49* − 0.53* − 0.13ns − 0.55* 0.75* − 0.78* − 0.82* 1.00

10. ND53 − 0.60* − 0.32ns − 0.29ns − 0.50* − 0.37ns − 0.66* 0.43* 0.31ns − 0.31ns 1.00

11. ND54 − 0.91* − 0.52* 0.31ns − 0.09ns 0.30ns − 0.86* 0.80* 0.78* − 0.93* 0.65* 1.00

12. ND57 0.45* 0.27ns − 0.49* − 0.28ns − 0.49* 0.27ns − 0.50* − 0.82* 0.60* 0.00ns − 0.48* 1.00

13. SAVI 0.88* 0.47* − 0.23ns 0.25ns − 0.12ns 0.97* − 0.57* − 0.60* 0.89* − 0.57* − 0.94* 0.41* 1.00

14. MSAVI 0.88* 0.45* − 0.36ns 0.13ns − 0.27ns 0.92 − 0.65* − 0.67* 0.94* − 0.50* − 0.95* 0.46* 0.99* 1.00

15. GEMI 0.86* 0.45* − 0.14ns 0.34ns 0.00ns 0.99* − 0.49* − 0.52* 0.83* − 0.62* − 0.91* 0.35ns 0.99* 0.96* 1.00

16. EVI 0.87* 0.42* − 0.41* 0.12ns − 0.28ns 0.92* − 0.64* − 0.67* 0.94* − 0.48* − 0.94* 0.47* 0.98* 1.00* 0.96* 1.00

V volume (m3 ha−1), G basal area (m2 ha−1), TM thematic mapper, ND normalised difference, NDVI normalised difference vegetation index, SAVI soil-adjusted vege-
tation index, MSAVI modified soil-adjusted vegetation index, GEMI global environment monitoring index, EVI enhanced vegetation index
nsNot significant at 5%; *significant at 5%

Table 5 Regression model fitted for basal area and volume estimation for the Eucalyptus stands

Model β0 β1 β2 R2aj Sxy Sxy (%)

G = β0 + β1ND54 0.78*** − 1.80*** – 0.81 0.09 5.76

V = β0 + β1NDVI + β2TM1 − 24.11* 42.69*** 241.61* 0.37 2.01 13.08

G basal area (m2), V volume (m3), β0, β1, and β2 coefficients, R
2
aj adjusted coefficient of determination, Sxy residual standard error, TM thematic mapper, ND

normalised difference, NDVI normalised difference vegetation index
***Significant at 1%; *significant at 10%
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data (Viana et al. 2012). Average basal area (17.03 m2 ha−1)
and volume (171.10 m3 ha−1) obtained from the prediction
set did not statistically differ from average basal area
(16.45 m2 ha−1) and volume (164.92 m3 ha−1) obtained
from the validation set, considering two-tailed Student’s t
test (Basal area: t = 0.629ns, df = 33, p value = 0.533; volume:
t = 0.550ns, df = 33, p value = 0.585).
The evaluation of spatial prediction methods, based on

prediction and validation sets, was done by comparing
the statistics presented in Eqs. 1 through 4 (Table 6).
The mean error (ME) should ideally be close to zero if
the prediction method is unbiased, and the values of this
parameter suggested that all predictions generated im-
partial estimates when evaluated from both prediction
and validation sets. Both the MAE and RMSE showed
that basal area estimates were more accurate than
volume estimates for all spatial prediction methods. The
MAE and RMSE results obtained from the validation set
demonstrated that there were no significant differences
among the MLR, RF, SVM, and ANN for basal area
estimates. For the volume estimates, the models fitted by

SVM had the best performance and MLR the poorest
performance.

Geostatistical modelling of prediction method errors
The semivariogram models were selected based on RAE
and SRE values close to 0 and 1, respectively (Yamamoto
and Landim 2013). The experimental semivariograms
constructed from the residuals of the basal area and
volume prediction methods had a spatial dependence
structure defined in six of the eight analysed situations
(Fig. 4 and Table 7). The volume residuals from MLR
and ANN methods had a pure nugget effect, i.e. no
spatial dependence structure. This result indicated a
random spatial distribution of the residuals in these two
situations.
The residuals of the spatial prediction methods that

had defined spatial dependence structures (Fig. 4) were
interpolated using ordinary kriging, and their estimates
were added to basal area and volume estimates of the
respective spatial prediction methods. The relative
improvement (RI) of the addition of basal area residual

Fig. 2 Relative importance of the variables within each machine learning algorithm: RF, SVM, and ANN for basal area and volume
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kriging by the ANN method was 25%, i.e. there was a
reduction from 8.52 to 6.37% in the RMSE (Table 8). For
the RF method, the RMSE increased from 9.54 to
10.08%, which corresponds to a 5.7% increase in the
error of the basal area estimates by kriging of the resid-
uals. For the volume, the addition of residual kriging
improved the precision of SVM estimates and reduced
the precision of the RF estimates.

Mapping of basal area and volume for Eucalyptus stands
Basal area and volume estimates obtained by different
spatial prediction methods (Table 9) had average values
very close to each other, and were in agreement with the
forest inventory estimates (Table 3). Only the ANN
method generated underestimated values for both basal
area and volume, so that the total values of basal area

and volume were not within the confidence interval
generated by the forest inventory.
Maps showing the spatial distribution of basal area

and volume identified the same areas with high and low
productivity, regardless of the spatial prediction method
(Figs. 5 and 6). The maps obtained by ANN had a
smaller difference between maximum and minimum
estimated values for basal area and volume, while the
mapping obtained from the SVM models had a greater
difference between these values. MLR and RF methods
provided similar estimates in the basal area and volume
mapping.
The addition of residual kriging in the basal area and

volume mapping (Fig. 7) resulted in a greater difference
between maximum and minimum estimated values in all
spatial prediction methods. For ANN, residual kriging
resulted in estimates that were more in agreement with
the field observations, correcting the basal area under-
estimation behaviour for the Eucalyptus stands under
study. However, the addition of residual kriging to the
models fitted by RF and SVM methods did not result in
significant differences in basal area and volume map-
ping, and also led to increases in estimation errors in
non-sampled areas in the field (Table 8).

Fig. 3 Scatter plots of measured values versus estimated values by:
MLR (a) and (e); RF (b) and (f); SVM (c) and (g); and ANN (d) and (h)
for basal area and volume, respectively. A 1:1 line (black, dashed) is
provided for reference

Table 6 Prediction methods evaluation using the prediction
and validation sets for the Eucalyptus stands

Method Statistic Basal area error (m2) Volume error (m3)

Prediction
set

Validation
set

Prediction
set

Validation
set

MLR ME 0.00 − 0.05 0.00 − 0.74

MAE 0.07 0.09 1.56 2.08

RMSE 0.08 0.14 1.89 2.48

RMSE
(%)

5.50 9.42 12.27 16.72

RF ME 0.01 − 0.03 0.08 − 0.90

MAE 0.03 0.09 0.62 1.63

RMSE 0.04 0.14 0.73 2.21

RMSE
(%)

2.48 9.54 4.77 14.91

SVM ME − 0.01 − 0.05 0.00 − 0.66

MAE 0.04 0.09 1.19 1.59

RMSE 0.06 0.14 1.60 2.02

RMSE
(%)

4.14 9.39 10.41 13.58

ANN ME 0.09 0.03 0.94 0.45

MAE 0.10 0.09 1.70 1.68

RMSE 0.14 0.13 1.98 2.05

RMSE
(%)

8.87 8.52 12.88 13.82

MLR multiple linear regression, RF random forest, SVM support vector machine,
ANN artificial neural networks, ME mean error, MAE mean absolute error, RMSE
root mean square error

dos Reis et al. New Zealand Journal of Forestry Science  (2018) 48:1 Page 9 of 17



Discussion
Remote detection of forest canopies is complex due to
the size, shape, and dielectric properties of its scatter
elements (leaves, branches, and stems) (Galeana-Pizaña
et al. 2014). The spatial diversity of forest canopies
makes the relationship between forest parameters and
remote sensing data a major challenge, although several
studies have already demonstrated correlation between
spectral data and forest characteristics of interest (Stojanova
et al. 2010, Viana et al. 2012, Castillo-Santiago et al. 2013,
Fayad et al. 2016, Gao et al. 2016). For instance, plantations
comprised of different Eucalyptus species may have very
similar values of basal area and volume, but have different
spectral characteristics due to differences in spectral behav-
iour of the species that form the canopies. Also, according
to Ponzoni et al. (2015), the canopy reflectance of older
Eucalyptus plantations (between 4 and 6 years) tend to
contain a greater contribution from green leaves and a
lower contribution from shadows, the background, and
from dry branches inside the canopies than the canopy
reflectance of young Eucalyptus plantations (< 4 years).
Thus, the canopy reflectance of older Eucalyptus planta-
tions generated highest correlations with bands of the in-
frared region of the electromagnetic spectrum and,
therefore, with vegetation indices that include these bands
in their compositions (Ponzoni et al. 2015). These results
are consistent with the best correlations found in this
study among the infrared bands, vegetation indices
derived from these bands, basal area, and volume. This
same behaviour was observed in the studies of Gebreslasie
et al. (2008), Canavesi et al. (2010), Berra et al. (2012), and
Pacheco et al. (2012).
Basal area was more strongly correlated with the spec-

tral data because this variable is derived from only the
diameter of the trees, which is directly related to size of
the tree canopies, and determines the canopy reflectance
(Ponzoni et al. 2012). On the other hand, volume is
derived from the diameter, form factor, and height of the
trees. Height estimates are obtained from empirical
equations that add errors during the volume estimation

Fig. 4 Experimental semivariograms of residuals from: MLR (a) and (e);
RF (b) and (f); SVM (c) and (g); and ANN (d) and (h) for basal area and
volume, respectively

Table 7 Nugget (τ2), sill (σ2), and range (ϕ) parameters for the selected semivariance function models for each of the variables in study

Variables Residual Selected model τ2 σ2 ϕ (m) RAE SRE

Basal area MLR Exponential 0.0016 0.0067 1350 − 0.0092 1.0818

RF Spherical 0.0004 0.0009 737 − 0.0079 1.0586

SVM Gaussian 0.0017 0.0037 1577 0.0089 0.9610

ANN Exponential 0.0000 0.0119 1430 − 0.0303 1.1393

Volume MLR Exponential PNE PNE PNE PNE PNE

RF Spherical 0.3316 0.2505 773 − 0.0051 1.0258

SVM Exponential 0.0000 2.5582 858 − 0.0039 0.9958

ANN Exponential PNE PNE PNE PNE PNE

MLR multiple linear regression, RF random forest, SVM support vector machine, ANN artificial neural networks, RAE reduced average error, SRE standard deviation
of the reduced average error, PNE pure nugget effect
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process. This acts to reduce the strength of relationships
between volume and variables obtained from remotely
sensed images. The ND54 index was the spectral variable
that had the strongest correlation with basal area (r=− 0.91)
and volume (r=− 0.52). However, it was also significantly
correlated with the other spectral variables. During multiple
linear regression analysis, the fact that two or more explana-
tory variables are highly correlated may generate multicolli-
nearity problems in the fitted models, since one of the

regression assumptions is that no linear relationship may
exist between any independent variables or linear combina-
tions of these (Montgomery et al. 2006).
For the MLR method, the best volume estimation

model was obtained from the TM1 band and the NDVI
(Table 5), yet was only able to explain approximately
37% of the variation in this stand attribute. Conversely,
the best model for basal area estimation used the ND54
index as the predictor variable and was able to explain

Table 8 Prediction methods with addition of the residual estimation by ordinary kriging using the prediction and validation sets for
the Eucalyptus stands

Method Statistic Basal area error (m2) Volume error (m3)

Prediction set Validation set Prediction set Validation set

MLR-RK ME 0.00 − 0.03 – –

MAE 0.03 0.09 – –

RMSE 0.04 0.14 – –

RMSE (%) 2.80 9.30 – –

RI 49.09 1.27 – –

RF-RK ME 0.01 − 0.05 0.00 − 1.03

MAE 0.04 0.10 0.63 1.70

RMSE 0.05 0.15 0.77 2.26

RMSE (%) 3.08 10.08 5.02 15.25

RI − 24.19 − 5.66 − 5.24 − 2.28

SVM-RK ME 0.01 − 0.03 − 0.32 − 0.57

MAE 0.05 0.10 0.80 1.22

RMSE 0.06 0.15 1.11 1.74

RMSE (%) 4.09 9.83 7.19 11.72

RI 1.21 − 4.69 30.93 13.70

ANN-RK ME 0.02 − 0.06 – –

MAE 0.04 0.06 – –

RMSE 0.09 0.09 – –

RMSE (%) 5.79 6.37 – –

RI 34.72 25.23 – –

MLR multiple linear regression, RF random forest, SVM support vector machine, ANN artificial neural networks, RK residual estimation by ordinary kriging, ME mean
error, MAE mean absolute error, RMSE root mean square error, RI relative improvement

Table 9 Statistics of basal area and volume maps estimated by spatial predictions methods MLR, RF, SVM, and ANN

Method Basal area (m2) Volume (m3)

Min Max Mean Standard deviation Total estimate Min Max Mean Standard deviation Total estimate

MLR 0.62 1.83 1.52 0.20 6151.9 4.51 19.99 15.30 2.30 61,739.5

MLR-RK 0.65 1.93 1.52 0.21 6141.0 – – – – –

RF 0.96 1,89 1.51 0.17 6101.5 9.26 18.08 15.27 1.81 61,600.1

RF-RK 0.93 1.93 1.53 0.17 6166.6 9.02 18.37 15.36 1.91 61,965.7

SVM 0.88 2.12 1.57 0.18 6326.2 1.36 19.64 15.31 2.57 61,760.7

SVM-RK 0.76 2.10 1.56 0.19 6284.2 1.10 21.78 15.29 2.92 61,683.8

ANN 0.97 1.65 1.42 0.22 5715.3 8.32 15.68 13.93 2.70 56,223.8

ANN-RK 0.90 1.94 1.50 0.23 6070.3 – – – – –

Min minimum value, Max maximum value, MLR multiple linear regression, RF random forest, SVM support vector machine, ANN artificial neural networks, RK
residual estimation by ordinary kriging
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more than 80% of the variation in this attribute, con-
firming the explanatory power of spectral data for basal
area estimation in Eucalyptus stands. Gebreslasie et al.
(2010) assessed the suitability of both visible and short-
wave infrared ASTER data and vegetation indices for
estimating forest structural attributes of Eucalyptus

species in southern KwaZulu Natal, South Africa. These
authors applied a MLR using MSAVI and band 3 as pre-
dictor variables and were able to explain slightly more of the
variation in basal area (R2 = 0.67) than volume (R2 = 0.65).
Although the MLR model for volume does not have a high
coefficient of determination, the spectral data can efficiently

Fig. 5 Spatial distribution of the basal area in Eucalyptus stands, estimated by: MLR (a), RF (b), SVM (c), and ANN (d)

Fig. 6 Spatial distribution of the volume in Eucalyptus stands, estimated by: MLR (a); RF (b); SVM (c); and ANN (d)
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explain the volumetric variations in non-sampled areas in
the field. In a similar study for Eucalyptus stands located in
the southern region of Brazil, Berra et al. (2012) concluded
that spectral data obtained from Landsat images were effi-
cient in mapping the volume in the study area, even when
the regression models did not present high coefficients of
determination (R2 < 0.70).
Divergence among variables that were deemed import-

ant between the different methods was observed with the
machine learning algorithms. For basal area modelling,
the ND54 index and NDVI had a higher importance value
for RF. Statistically, these indices had high correlation
values with the variable of interest (r = − 0.91 and 0.83,
respectively) and high multicollinearity (r = − 0.93). The
ND54 index also was the variable that most contributed
to the volume estimate by the RF method. The fact that
the explanatory variables are correlated does not affect the
performance of these algorithms. These methods do not
rely on underlying assumptions about the data, which

allows them to work with all available explanatory vari-
ables, without loss of information in the process of vari-
able selection and reduction (Görgens et al. 2015). For the
models fitted using ANN and SVM algorithms, the TM2
band was the most important predictor variable for basal
area and volume. The linear correlation between this
variable and basal area and volume is low to non-existent
(r = 0.15 and − 0.02, respectively). However, this band is
usually applied in vegetation vigour assessment (Meng et
al. 2009), a characteristic that is indirectly related to
volume and basal area, and which may explain the greater
contribution of the TM2 band in the ANN and SVM algo-
rithms, since trees that are more vigorous tend to have
higher values of basal area and volume.
The models of basal area and volume developed by

the RF algorithm had smaller errors compared with
those developed by other machine learning algorithms
and MLR. The performance of this algorithm has been
proven in many modelling and remote sensing studies

Fig. 7 Spatial distribution of the basal area in Eucalyptus stands estimated by: MLR (a): RF (b); SVM (c); and ANN (d) with addition of the residual
estimation by ordinary kriging; and for volume estimated by RF (e) and SVM (f) with addition of the residual estimation by ordinary kriging
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(Lafiti et al. 2010, Rodriguez-Galiano et al. 2015, Wu et
al. 2016). In the study by Shataee et al. (2012), volume
prediction models developed by RF performed better
than those developed using k-nearest neighbour (k-NN)
and SVM. Employing ASTER satellite data, the relative
RMSE obtained for all three volume models was higher
than for the models developed in our study: 28.54% for
k-NN, 25.86% for SVM, and 26.86% for RF, and only the
RF algorithm produced unbiased volume estimations.
For basal area, RF produced models with lower RMSE
(18.39%) when compared with SVM (RMSE = 19.35%)
and k-NN (RMSE = 20.20%); however, only k-NN was
able to generate unbiased estimation compared with the
other two algorithms used.
One of the positive features of RF is that it achieves

satisfactory performance even with a limited number of
samples and with many independent variables (attri-
butes), as in the case of this current study. It is an
ensemble method, which combines several regression
trees to generate an average estimate, in which different
attributes are used in each tree, making the results take
into account the information of all available attributes.
Stojanova et al. (2010) also concluded that ensemble
methods (RF) were significantly better in height and
canopy cover modelling using remote sensing data than
single- and multi-target regression trees. The ANN and
SVM algorithms also have proven good performance
and robustness in several studies (e.g. Shao and Lunetta
2012, Were et al. 2015). However, the parameterisation
of these methods is laborious, and they are very sensitive
to the variation of input parameters, with ANN being
more sensitive than other methods (Rodriguez-Galiano
et al. 2015). This same behaviour was observed in this
study, where the use of a restricted dataset by ANN
resulted in estimates that were not compatible with the
forest inventory estimates (Tables 3 and 9).
The addition of residual kriging in spatial prediction

methods did not necessarily result in relative improve-
ments in the estimation of these methods. In the case of
MLR and ANN methods, residual kriging contributed to
better accuracy of the basal area estimates. These results
are consistent with the results of Dai et al. (2014), who
reported that the combination of the residual kriging
with artificial neural networks provides an improvement
in the estimate accuracy of the variables of interest. The
combination of MLR with residual kriging also provided
improvements in estimates in the studies of Viana et al.
(2012), Castillo-Santiago et al. (2013), and Galeana-
Pizaña et al. (2014). For basal area and volume estima-
tion, the addition of residual kriging in the RF and SVM
methods resulted in a lower precision of the estimates.
Hybrid methods are advantageous in the ability to use
spatial information (ordinary kriging of residuals) and
non-spatial information (multiple linear regression

analysis and machine learning algorithms). However, in
some situations, hybrid methods provide less-accurate
estimates in regions where the data collected in the field
are sparse (Palmer et al. 2009).
The high growth rate of Eucalyptus stands in Brazil

reinforces the importance of robust methods that con-
sider auxiliary information in the process of estimating
variables of interest, such as basal area and volume. The
methodologies presented here are powerful tools for
estimating basal area and volume from spectral data ob-
tained from Landsat 5 TM or from other multispectral
optical sensors. According to Görgens et al. (2015), ma-
chine learning algorithms can continuously learn from
new data and keep all the accumulated knowledge of
previous datasets. This fact allows the implementation of
these algorithms in other situations where only limited
amounts of data are available. The use of all auxiliary
variables in the estimation process is another advantage
over traditional regression methods, since machine
learning algorithms are not restricted by correlation
between input variables, thus avoiding the loss of
important information in the estimation process of the
variable of interest. Nevertheless, these methods have as
disadvantage the transparency of the resulting models,
so an alternative to overcome this obstacle is the evalu-
ation of the relative importance of the explanatory vari-
ables. Furthermore, the causal relation between inputs
and outputs of the estimation process is not clear, which
implies a limited biological interpretation (Aertsen et al.
2010, Özçelik et al. 2013).
The results from the current study do need to be

interpreted cautiously, as they are limited to a
homogenous and relatively small study area. While this
work uses a small number of plots, it represents the
sampling intensity adopted by most Brazilian forestry
companies, i.e. one plot (usually 200–500 m2 in size) for
each 10 ha of Eucalyptus plantation (Raimundo et al.
2017, Scolforo et al. 2016) and the results from this
research showcase the importance of using remotely
sensed data and robust prediction methods for basal
area and volume estimation. The data used here were
also from a relatively old sensor, Landsat 5 TM, and a
study by Fassnacht et al. (2014) concluded that predictor
data (sensor) type is the most important factor for the
accuracy of biomass estimates and that the prediction
method had a substantial effect on accuracy and was
generally more important than the sample size.
Fassnacht et al. (2014) also suggested that choosing the
appropriate statistical method may be more effective
than obtaining additional field data for obtaining good
biomass estimates.
Considering the cost of improving accuracy of timber

production estimates by field measurements in Eucalyptus
stands, it seems sensible to invest in further studies that
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focus on more test sites and a wider range of sensor sys-
tems (particularly RADAR and LIDAR). This would further
increase our understanding of the role of the statistical
model set-up in remote sensing-based estimates of forest
variables in Eucalyptus stands. Further studies could also
investigate whether other prediction methods, such as non-
linear regression or partial least squares regression (PLSR)
approaches, alter our findings. The integration of additional
predictors (e.g. topographic information or climate vari-
ables) would be a further possible extension of our work.

Conclusions
Machine learning algorithms, particularly the random for-
est (RF) and support vector machine (SVM) algorithms,
were able to develop models that estimate basal area and
volume in Eucalyptus stands using spectral data collected
from Landsat 5 TM images. The artificial neural network
(ANN) method did not perform well in this context, due
in part to the limited data availability.
Random forest was the best method of spatial prediction

and mapping of basal area and volume in Eucalyptus
stands in Minas Gerais state. However, due to the close
performance to the support vector machine and multiple
linear regression methods, we propose that both methods
should be tested and then the best result applied for
spatial prediction of basal area and volume in other
regions with Eucalyptus stands. The approaches used in
this study provide a framework for integrating field and
multispectral data, highlighting methods that greatly
improve spatial prediction of basal area and volume esti-
mation in Eucalyptus stands. Although the sensor TM of
Landsat satellites is no longer operational, the concepts
presented in this study are expected to be consistent
regardless of the sensor. Thus, the approach used in this
study can be more broadly applied to basal area and
volume estimation in Eucalyptus stands using the new
optical sensors such as Landsat 8 OLI and Sentinel-2.
The combination of spatial prediction methods with

residual kriging should be used with caution, since the
relative improvement of spatial prediction accuracy of
basal area and volume did not occur in all methods, and
there is not always a spatial dependency structure in the
residuals of a spatial prediction method.
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