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ABSTRACT

Considerable areas in the northern parts of Norway are afforested with Picea
abies (L.) H.Karst. (Norway spruce), Picea × lutzii Little (Lutz spruce), and
Picea sitchensis (Bong.) Carrière (Sitka spruce). The species have different
machining and wood properties but are similar in visual appearance. We
evaluated whether near infrared (NIR) spectroscopy combined with
multivariate statistical modelling could be used to identify wood from these
three species. In all, 83 wood specimens were available for analyses, 36 of
which were used as a test set for model validation. NIR spectra were obtained
on the cross-sectional surfaces.

An initial principal component analysis indicated that little information from
the first and second components could be used for discrimination, but in
score-plots of the third and fourth components the samples from the tree
species formed clusters. This showed that the NIR spectra did contain
information relevant for tree species identification, and that only a small
fraction of the total variance could be used for that purpose.

For classification of the wood specimens, partial least squares discriminant
analyses were applied. All 47 specimens in the training set were fitted into
the correct group. The test set validated results showed that except for two
wood specimens, all specimens were correctly classified. The two misclassified
samples were Sitka spruce.

* Based on a paper presented at IUFRO WP S5.01.04 Fifth Workshop on Wood Quality Modelling,
20–27 November 2005, Waiheke Island, New Zealand

† Corresponding author: per-otto.flate@skogoglandskap.no
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This study showed that development of well-performing prediction models
for differentiation of wood from Norway spruce, Lutz spruce, and Sitka
spruce is possible.

Keywords: near infrared spectroscopy; discriminant analysis; wood
classification; Picea abies; Picea sitchensis; Picea × lutzii.

INTRODUCTION

For industrial utilisation of wood, knowledge about raw material quality is
paramount. Certain raw material properties are needed in order to be able to produce
the final product according to specifications. The properties demanded can be
stiffness, strength, and visual appearance.

In Norway a considerable afforestation programme started after the Second World
War. Plantations of Norway spruce, Sitka spruce, and Lutz spruce were established
in western and northern parts of the country. At present the species occur in pure
plantations, but as they all prosper in the moist climate they will eventually be found
also in mixed stands.

The three species have different properties, such as mechanical and machining
properties, and should therefore be treated separately in wood processing as well
as for final products. Sandland & Eikenes (1996a) investigated different aspects of
lumber manufacturing of Norwegian-grown Sitka spruce. During resawing of
lumber with a circular saw, they found that the feeding speed had to be reduced to
half the normal speed used for resawing Norway spruce. It was found that the knots
in Sitka spruce were harder and that they had a higher density than knots in Norway
spruce, and it was concluded that this was why the feeding speed had to be reduced.
In an earlier study, Foslie (1985) found that for primary lumber production the
power consumption in circular sawing of Sitka spruce was 11.8% higher than
Norway spruce. Sandland & Eikenes (1996b) investigated bending strength and
density of Sitka spruce lumber from the western part of Norway and found that the
strength/density ratio was higher for Sitka spruce than for Norway spruce. Information
on properties of wood from Norwegian-grown Lutz spruce is lacking since it has
not been tested. However, it is reasonable to expect that this species has properties
that differ from the other two.

Differentiation of Norway spruce, Sitka spruce, and Lutz spruce is mostly quite
straightforward on standing trees in monoculture plantation forests. The difficulties
with species identification increase in mixed forests, and increase further at
industrial locations, as logs from different tree species are difficult to identify. For
the final product, such as surfaced wood, differentiation of the three tree species can
be very difficult because the wood types have similar visual appearance.

NIR spectroscopy is a method that has yielded promising results when used to
classify various types of wood. Brunner et al. (1996) used NIR spectroscopy to
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differentiate wood from 12 tree species, mainly tropicals. Schimleck et al. (1996)
used NIR spectroscopy and principal component analysis for eucalypt wood
classification. Borga et al. (1992) found that NIR spectroscopy can be used to
classify milled samples from wet-stored timber of Pinus sylvestris L. (Scots pine)
into heartwood and sapwood. It has been shown that data from NIR spectroscopy
measured on solid wood can be successfully used in multivariate statistical models
to classify wood specimens of Scots pine into heartwood and sapwood (Flæte &
Haartveit 2003). Results have also been presented indicating that NIR spectroscopy
may be used to differentiate between wood samples of the same species, but from
different origins (Gierlinger et al. 2004).

The aim of this study was to evaluate NIR spectroscopy with multivariate statistical
modelling as a tool for differentiating wood of three species of spruce which have
similar visual appearance.

MATERIAL AND METHODS

Sampling of Wood

Sawnwood samples were produced from Norway spruce, Sitka spruce, and Lutz
spruce originating from seven locations in northern Norway. Four trees were
collected from each location (stand), and a short log section from the lower part of
each trunk (1.5–2.5 m above the base) was used to prepare small clear samples (20 ×
20-mm cross-sections parallel to the orthogonal planes of the wood matrix). Three
specimens were produced from each tree, giving a sample of 12 specimens from
each stand (except for Stand 2 where only 11 specimens were available). Descriptive
statistics for annual ring width and density for the specimens from the stands are
given in Table 1.

TABLE 1–Basic statistics of annual ring width and density of the wood specimens sampled
from each of the seven stands.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Stand Spruce n Annual ring width (mm) Density, ρ12 (kg/m3)

--------------------------------- ---------------------------------
species Mean Std Min. Max. Mean Std Min. Max.

dev. dev.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

1 Norway 12 1.6 0.6 1.0 2.7 408 34 352 455
2 Sitka 11 5.6 1.2 3.7 7.4 377 22 339 413
3 Lutz 12 2.0 0.6 1.5 3.6 436 29 394 477
4 Norway 12 1.3 0.4 0.9 2.6 417 30 355 456
5 Lutz 12 2.2 0.5 1.7 3.2 480 32 436 535
6 Norway 12 2.0 0.9 1.2 4.3 410 31 357 453
7 Sitka 12 4.7 0.8 3.6 6.0 380 37 317 431

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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NIR Spectroscopy

NIR spectra were collected on one of the cross-sectional faces of each of the 83 air-
dry wood specimens. The cross-sectional faces were prepared by circular sawing.
There were no visible colour differences between woods from the three different
tree species. Scanning of spectra was performed in reflectance mode, in the 700 nm
–2500 nm range, in 0.35-nm steps, by a PerkinElmer Spectrum One NTS system
equipped with a Near Infrared Reflectance Accessory (NIRA) package (Fig. 1).
The specimens were placed directly on the circular sapphire window on top of the
Near Infrared Reflectance Accessory. The diameter of the window was 10 mm. For
each spectrum 25 scans were collected and averaged. Spectra below 900 nm were
discarded because of high levels of noise observed in the region 700–900 nm.
Before analyses the wavelength variables were reduced (averaged) by a factor of 6.

FIG. 1–The PerkinElmer
Spectrum One NTS
system. The wood
specimen was placed
with a cross-
sectional surface on
the circular window
over the light source.

Multivariate Data Analyses
The reflectance data expressed as apparent absorbance (log 1/reflectance) were
centred, and to correct for baseline shifts they were transformed to first derivatives.

Principal component analysis

Principal component analysis, performed to compress the data matrix, is a linear
modelling method that projects the original variables on to a smaller set of variables
called principal components. By applying principal component analysis to the
spectral matrix, the large number of highly correlated variables will be reduced to
a few orthogonal (and thereby uncorrelated) principal components.

Principal component scores are the projected locations of each sample on to each
principal component. Scores can indicate latent structures and clusters of samples.
The loadings express the contribution of each variable (wavelength) to each
principal component.
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Partial least squares regression

Partial least squares regression is a linear modelling method that compresses the
spectral data and projects them on to partial least squares components. The partial
least squares 1 method extracts the spectral information with the largest covariance
to one dependent variable (Martens & Næs 1989). In the partial least squares 2
method two or more dependent variables are modelled simultaneously. Partial least
squares components are created so that they are mutually orthogonal, thus avoiding
problems related to co-linearity among the variables in the X-matrix. Compared to
traditional statistical modelling based on least squares estimation, independent
variables in the X-matrix are not a requirement for the partial least squares method.
Partial least squares regression can also handle situations where the number of
variables far exceeds the number of samples, which is typical for modelling with
NIR data.

Partial least squares discriminant analysis

Partial least squares discriminant analysis involves developing a conventional
partial least squares regression model, but instead of a continuous variable the
response variable is a binary class indicator variable.

If there are only two classes to separate, the partial least squares model uses one
response variable, which codes for class membership as follows: 0 for members of
one class, 1 for members of the other one. The partial least squares 1 algorithm is
then used. If there are three classes or more, partial least squares 2 is used. Each class
is represented by an indicator variable, i.e., a binary variable with value 1 for
members of that class, 0 for non-members. By building a partial least squares 2
model with all indicator variables as Y, one can directly predict class membership
from the X-variables describing the samples. The model is interpreted by viewing
Predicted vs Measured for each class indicator Y-variable:

• Ypred > 0.5 means “member”;
• Ypred < 0.5 means “non-member”.

In this study it was known that each wood specimen was either Norway spruce,
Sitka spruce or Lutz spruce. For this reason three binary variables were constructed,
one for each tree species. Each wood specimen was assigned to the group for which
the model had the highest estimated response.

Model evaluation and validation

The partial least squares discrimant analysis model presented was validated using
test-set validation. Although the preferred material for a test set is obtained through
conducting a new sampling, a frequently used alternative is to split the obtained data
into a training set and a test set. A model that performs well when validated using
test sets has a higher chance of performing well when predicting new samples. The
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83 samples were divided into a calibration set and a validation set. The validation
set consisted of 36 wood specimens (Stands 1, 3, and 7), leaving 47 specimens
(Stands 2, 4, 5, and 6) available for model calibration. In all, the test (validation) set
consisted of 12 specimens of each species.

The specimens were assigned to a calibration and validation set based on their
origin (stand), instead of splitting the data randomly. This is a conservative
approach, as it is reasonable to assume that trees from the same origin are somewhat
correlated with respect to wood properties. Hence, if trees from the same stand are
present in the calibration and the validation set, as would happen with random
selection of the data sets, there is a risk of over-estimating the predictive capabilities
of the model.

The models were evaluated according to their predictive capabilities measured in
terms of the proportion of specimens from the test set that was correctly classified.
The models should also preferably fit each wood specimen into the correct group
in the calibration.

The statistical analyses were performed in the Unscrambler® from Camo Process
AS.

RESULTS

There was no observable colour difference between wood specimens from the
different tree species. To identify information useful for classifying wood from the
different tree species, an initial principal component analysis was performed on the
first derivatives of the spectra from the 83 samples. The optimal number of principal
components was four, which described 85% of the original variance in X. A score
plot of principal components 1 and 2 is shown in Fig. 2; they explained 64% and
11% of the original variance, respectively. There was no tendency towards
clustering of samples from the same species, and little information in the first two
principal components could assist in identification of tree species. The score plot
of principal components 3 and 4 is shown in Fig. 3. Principal component 3
explained 6% and principal component 4 explained 4% of the original variance in
X. There was a tendency for specimens of Sitka spruce and Lutz spruce to be
differentiated by principal component 3, while principal component 4 differentiated
between Norway spruce and the two other species. It seems that the NIR spectra did
contain information relevant for discrimination of the different tree species, but that
the information represented only a small fraction of the total variation in the NIR
spectra.

For the partial least squares discriminant analysis model the optimal number of
partial least squares components was four. The regression coefficients for the
partial least squares 2 regression models of Norway spruce, Sitka spruce, and Lutz
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spruce are given in Fig. 4. The regression coefficients for Norway spruce and Lutz
spruce showed a strong inverse relationship. The regression coefficients for Sitka
spruce were small for most of the spectral range, except from the areas around 1900
nm and 2500 nm. In these spectral areas, the regression coefficients for Norway
spruce and Lutz spruce were close to zero.

A first impression of model performance is given by the fitted values of the response
variables. The fitted values based on model calibration are reported in Table 2. The
results show that all the 47 specimens had fitted values that classified them to the
correct tree species.

FIG. 2–Principal component analysis score plot of the first and second principal
components of the NIR spectra.

FIG. 3–Principal component analysis score plot of the third and fourth principal
components of the NIR spectra.



Flæte et al. — Differentiation of wood from spruce species 389

The partial least squares discriminant analysis model was validated using test set
validation as described in the Methods section.

In all, 94% of the wood specimens were correctly classified (Table 3). The wood
specimens from Norway spruce and Lutz spruce were all correctly classified. Two
Sitka spruce specimens were predicted into wrong groups, one was predicted into
the Norway spruce group and the other was predicted into the Lutz spruce group.

Of the 34 correctly classified wood specimens in the test set, three had high
predicted values (> 0.5) for more than one tree species, and two had low predicted
values (< 0.5) for all tree species.

TABLE 2–Results from partial least squares discriminant analysis model calibration. The
training set consisted of 47 samples.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Fitted into group True group

----------------------------------------------------------------
Norway spruce Sitka spruce Lutz spruce

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Norway spruce 24 0 0
Sitka spruce 0 11 0
Lutz spruce 0 0 12

Total number 24 11 12
Number correct 24 11 12
Proportion correct 1.00 1.00 1.00

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

FIG. 4–Regression coefficients from the partial least squares discriminant analysis
model for each of the three tree species.
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TABLE 3–Results from partial least squares discriminant analysis model validation. The
test set consisted of 36 samples.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Predicted into True group Total

--------------------------------------------------------
group Norway spruce Sitka spruce Lutz spruce correct

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Norway spruce 12 1 0 12
Sitka spruce 0 10 0 10
Lutz spruce 0 1 12 12

Number correct 12 10 12 34
Total number 12 12 12 36
Proportion correct 1.00 0.83 1.00 0.94
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

DISCUSSION

The results presented indicate that NIR spectroscopy can be used successfully to
create models for wood classification. The principal component analysis showed
that only a small part of the total variance of the NIR spectra contained information
relevant for discrimination of these three tree species. This agrees well with the fact
that most of the wood matrix of the species included in this study is built up of
similar structural elements.

The material we based this study on was small — 83 samples in all, of which 36
samples (43%) belonged to the test set. It is always a difficult trade-off to select the
number of observations for model calibration and for model validation, respectively.
The validation approach used in this study was conservative as all samples from
stands 1, 3, and 7 were placed in the test set. It has been argued that validation using
data splitting is of little value (Kozak & Kozak 2003), and that observations should
be saved for model calibration. Those authors claimed that validation by data
splitting provides little incremental information compared with the information
revealed in standard statistical analysis, and that models should always be validated
using external data. The requirements for individual sampling are somewhat
unclear. In this study the material was sampled by several persons, in several
different stands. It could be argued that collecting wood from different stands
constitutes an individual sampling. This argument is reinforced if all samples
coming from the same forest stand are put into the test set.

Despite the high proportion of correct classifications, some wood specimens had
high predicted responses for several tree species, while other wood specimens had
small predicted responses for all tree species. This result shows that classification
and sorting of tree species are not always straightforward. Still, this study
demonstrated that it is possible to classify wood types that are closely related and
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have similar visual appearance. The models will steadily improve as more wood
specimens are classified, because the classified specimens can be used in calibration
sets for new and improved models. NIR spectroscopy is commonly used in this way
— for example, for monitoring the quality of different food products.

The partial least squares discriminant analysis resulted in correct classification of
all the specimens of Norway spruce and Lutz spruce, while two of the Sitka spruce
wood specimens were misclassified. This is not surprising as the regression
coefficients for Norway spruce and Lutz spruce showed a strong inverse relationship
along the whole spectral range (Fig. 4). Conversely, there were only narrow spectral
areas where the partial least squares regression coefficients for Sitka spruce were
high and the corresponding regression coefficients for Norway spruce and Lutz
spruce were close to zero. Despite the small calibration set and the structure of
regression coefficients, the partial least squares discriminant analysis model
performed well also for Sitka spruce. This underpins the potential for calibrating
partial least squares models with higher classification performance if a large
number of calibration samples are used.

The mean values for density were highest for Lutz spruce, lower for Norway spruce,
and lowest for Sitka spruce (Table 1). One pitfall when developing models aiming
to differentiate between wood species can be that the true response variable in the
model is a variable other than the target response variable which does, however,
correlate with the response variable of interest. This is a potential problem in the
present study, because the densities are somewhat grouped according to species. By
developing a model based on density as the response variable, the model would fail
when applied on new samples with different wood densities. However, there are no
indications of this problem in the present study. Although the mean density of wood
specimens from the stands was grouped according to tree species, the values for
specimens overlapped in many cases. Additionally, a partial least squares regression
model was developed for wood density, and the pattern of the plot of the regression
coefficients was different from that shown in Fig. 3.

Brunner et al. (1996) used NIR spectroscopy to differentiate 12 species of wood,
and found that comparison of test results was possible only when the samples had
been prepared identically. It is possible that pre-treatment of the spectral data (e.g.,
use of transformations) could have handled this problem. However, this aspect has
to be considered when calibrating models for applications where the preparation of
wood specimens cannot be performed identically.

As differentiating these tree species at an early stage of the production chain will
facilitate better utilisation of the raw material, this procedure should also be tested
on green timber.
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CONCLUSION

It is possible to develop well-performing prediction models for differentiation of
wood from Norway spruce, Lutz spruce, and Sitka spruce based on near infrared
spectroscopy.
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