GENETIC VARIATION IN SHRINKAGE PROPERTIES OF EUCALYPTUS PILULARIS ASSESSED USING INCREMENT CORES AND TEST BLOCKS*

MARIE-CHANTALE PELLETIER[†],

Sustainable Forestry Program, Southern Cross University, P. O. Box 157, Lismore, NSW 2480, Australia

MICHAEL HENSON, STEVE BOYTON, DANE THOMAS,

Forests NSW, P. O. Box J19, Coffs Harbour Jetty, NSW 2450, Australia

and JEROME VANCLAY

Sustainable Forestry Program, Southern Cross University, P. O. Box 157, Lismore, NSW 2480, Australia

(Received for publication 19 November 2007; revision 7 March 2008)

ABSTRACT

Assessments of genetic variation in wood properties are difficult and expensive to carry out. As a consequence, the inclusion of wood quality traits in eucalypt breeding programmes has to date been limited. This study was part of a large investigation into the use of non-destructive methods of assessing wood properties by comparing the results with those from traditional destructive methods. This component of the study investigated the genetic variation in linear shrinkage of 152 open-pollinated families of Eucalyptus pilularis (Smith) at 17% m.c., 12% m.c., and 5% m.c. Increment cores and test blocks were used to assess radial and tangential shrinkage as well as their ratio. Heritability estimates were moderate for tangential shrinkage but not significant for radial shrinkage or the ratios of the two. The genetic correlation between shrinkage measured on cores and on blocks at this stage was not sufficient to justify the use of increment cores alone in genetic assessments. Basic density had a moderate and negative correlation with tangential shrinkage, suggesting that selecting for higher basic density may help reduce tangential shrinkage. The increment core method was not successful at measuring radial shrinkage due to core distortion. Measurements from scans and blocks showed that radial shrinkage was not heritable.

Keywords: shrinkage; increment cores; genetic improvement; wood properties; *Eucalyptus pilularis*.

[†] Corresponding author: mpelletier@hurfords.com.au

Current address: Hurfords Hardwood, P. O. Box 393, Lismore, NSW 2480, Australia

^{*} Paper originally presented at the inaugural Australasian Forest Genetics Conference "Breeding for Wood Quality", Hobart, 11–14 April 2007.

New Zealand Journal of Forestry Science 38(1): 194-210 (2008)

INTRODUCTION

Large-scale eucalypt plantations are a relatively recent phenomenon in Australia. Most are being grown for pulpwood, but increasing numbers are being managed for sawlogs. Some of the plantation resource is expected to supply the growing demand for higher value products such as flooring, furniture, and veneers (Nolan *et al.* 2005). However, this new plantation timber is markedly different from the native forest regrowth timber it is replacing. Plantation logs are typically younger and smaller than native forest logs, and little is known about their wood properties. It is still uncertain how well the plantation resource can meet the high quality standards required for appearance-grade products.

Most wood properties display high intra-specific variability, and are moderately to highly heritable; genetic improvement is one way of achieving high-value products from plantation wood (Donnelly *et al.* 2003). Breeding objectives for eucalypts are increasingly taking into account wood quality. Basic density has played an important role in genetic improvement of pulp regimes of *Eucalyptus urophylla* S.T. Blake, *E. globulus* Labill., and *E. nitens* (Deane & Maiden) Maiden (Greaves *et al.* 1997; Wei & Borralho 1997; Raymond 2002; Kube & Raymond 2002). Genetic improvement studies for improving quality of solid-wood products are only beginning.

Assessing wood quality for selection and breeding programmes requires investigation of a large number of families and a sufficient number of individuals per family. Traditional methods of assessment are not only costly — they also involve the destruction of the sample trees and the loss of genetic material (Downes *et al.* 1997; Raymond *et al.* 1998; Raymond 2002). These factors are driving the development and evaluation of non-destructive methods of assessing wood quality.

Increment cores are the most common form of non-destructive sampling and they have long been used for growth assessments, for dendrochronology, and to establish forest stand histories. More recently they have been used to assess some wood properties in softwoods and hardwoods employing a wide range of methods. Basic density, pulp yield, grain angle, latewood proportion, extractives content, tracheid length, and reaction wood proportion have been measured in increment cores by direct measurements, dissection, image analysis, NIRA (near-infrared reflectance analysis), and SilviScan (Cown *et al.* 1992; Harding & Copley 2000; Raymond & Muneri 2001; Washusen & Ilic 2001; Kube & Raymond 2002).

Raymond et al. (1998) compared the costs and accuracy of measuring basic density using destructive and non-destructive sampling methods in *E. globulus* and *E. nitens*. They found that four discs per tree taken (destructively) at different heights explained 95–98% of the observed variation in basic density, compared to 50–53% for four pilodyn (non-destructive) readings per tree, and 81–82% for

a single increment core (non-destructive) taken per tree. Raymond *et al.* (1998) concluded that increment cores provided the cheapest and the most accurate non-destructive method of assessment, although the rate for pilodyn assessment appears conservative. If the core samples are used to measure other properties, then their cost effectiveness increases further.

Non-destructive methods for asssessing pulpwood quality, such as pilodyn and near-infrared spectroscopy, are well developed (Greaves *et al.* 1995; Laurence *et al.* 1999). There is a need, however, to develop similarly reliable methods of assessing wood properties relevant to solid-wood products. Recent studies have investigated the possibility of using increment cores to assess shrinkage in standing trees (Arnold *et al.* 2004; Yang & Pongracic 2004; Harwood *et al.* 2005; Bandara 2006). The properties tested included tangential shrinkage and collapse in cores as well as in sawn boards of *E. dunnii* Maiden and *E. globulus*. Cupping in backsawn boards was found to be widespread in one study, and it was suggested that future assessments include the measurement of radial shrinkage (Harwood *et al.* 2005). The need to correlate core sample measurements to actual defects in sawn boards in order to validate the method was also highlighted (Hamilton *et al.* 2004). A list of studies that have used increment cores for shrinkage assessments is presented in Table 1.

The study reported here explored the use of increment cores to assess the genetic contribution to linear shrinkage in E. pilularis, an important commercial species of the New South Wales north coast. In 2005–06, Forests NSW produced 217 000 m³ of *E. pilularis*, of which 60% met the requirements for high-quality wood products. The agency currently has 15 000 ha of E. pilularis plantations (Henson & Smith 2007). They have recently initiated the largest inquiry ever undertaken into the genetics of various wood properties. The project involves assessing the genetic contribution to shrinkage and other wood properties in E. pilularis, as well as testing a range of non-destructive methods of assessing wood properties for breeding purposes. The non-destructive assessments (coring, pilodyn, longitudinal growth strain, acoustic velocity, NIRA, molecular genetics) are followed by traditional destructive methods of assessing the same properties on the same material, providing a unique and unprecedented opportunity to test each method's accuracy. Destructive assessments include shrinkage and collapse measurements on standard test blocks, mechanical properties testing on standard clear samples, and a commercial sawing study to measure shrinkage on standard industrial-size boards.

The study presented here was part of the larger project. This study investigated the genetic contribution to basic density and shrinkage properties as measured in bark-to-bark increment cores. The purpose of the study was three-fold:

(1) Explore the use of increment cores to assess linear shrinkage in both tangential and radial directions;

			vary pro assessed using invitant vores.
Source	Species	Properties measured	Method
Washusen & Ilic 2001	E. globulus	T and R shrinkage T and R collapse	12 mm cores dried to 17% m.c.
		Tension wood properties	Reconditioned 1 h
Yang & Pongracic 2004	E. globulus	T and R shrinkage	Dried to 12% m.c. (30°C, 65% RH)
Hamilton <i>et al</i> . 2004	E. nitens	Volumetric shrinkage	12 mm cores dried to 12% m.c. (22°C, 30% RH)
Kube & Raymond 2002	E. nitens	T collapse Basic density Cellulose content	12 mm cores. Oven dried (105°C)
Harwood <i>et al</i> . 2005. Bandara 2006	E. dunnii	T shrinkage Basic density	12×12 mm flitches (pseudo-cores) dried at 70°C for 48 h. Reconditioned 0.5 h
Bandara 2006	E.grandis	T and R shrinkage	15×15 mm flitches (pseudo-cores) dried at 25°C, 65%RH. Reconditioned 1 h.

TABLE 1-Dublished reports of tanoential (T) and radial (R) shrinkage in encalynts assessed using increment cores

- (2) Assess the genetic contribution to shrinkage properties and basic density in a 9-year-old *E. pilularis* progeny trial;
- (3) Identify material of superior dimensional stability to use for future propagation and tree improvement.

METHODS

Study Material

The genetic material used in this study was from a progeny trial growing at Hannam Vale, approximately 40 km south-west of Port Macquarie, NSW (latitude $31^{\circ}40'$, longitude $152^{\circ}33'$, elevation 150-170 m a.s.l.). Mean annual rainfall at the site was 1500 mm and soils were Deep Yellow Earths to Yellow Podzolics. The trial was one of three planted on the NSW north coast in 1997 and 1998 by Forests NSW as the first step in a *E. pilularis* genetic improvement programme launched in 1994–95 (I.G.Johnson unpubl. data). An early selection based on growth and form assessment at age 3 years lead to the establishment of clonal seed orchards. The study was part of the final selection based on wood quality which will further improve the seed orchards.

The Hannam Vale trial was planted in March 1997 and was 9 years old at the time of assessment. It was an alpha generalised lattice, row-column (18-row \times 17-column) design (Williams *et al.* 2002) consisting of six replicates and 308 *E. pilularis* open-pollinated families established in four-tree-row plots. Each replicate contained 308 plots (families) each represented by four individuals, for a total 24 individuals per family across the replicates and in excess of 7000 trees across the trial. However, at the time of measurement natural mortality had reduced this to 5465 trees. The trees were grown from open-pollinated seed collected from candidate trees from 36 provenances from the NSW central coast to south-east Queensland.

To assess genetic variation in shrinkage properties of *E. pilularis*, 958 increment cores representing 152 families were collected from a progeny trial, with each family represented by three to 14 individuals per family. A minimum of three individuals per family was used to increase the reliability of heritability estimates.

Amongst the trees cored, 419 were subsequently processed into standard size shrinkage blocks measured in the same manner as the increment cores. The ranking results obtained using the non-destructive method (increment cores) were tested against results from the shrinkage blocks (destructive method).

Sample Preparation

Bark-to-bark increment cores 12 mm in diameter were extracted at breast height using a motorised corer developed by Queensland DPI & Fisheries, Wood Quality Improvement Laboratory, Innovative Forest Products Program. All cores were extracted in the north-south direction. After extraction the cores were marked with the tree ID number and placed in aluminium channelling of 13 mm internal width. The channels were intended to help keep the pieces of broken cores together, and restrain the cores as they dried. All cores and their channels were placed inside plastic bags immediately after extraction to minimise moisture loss. The bags were kept in refrigeration at the site, then weighed and placed in a freezer at the end of each day. Cores were kept frozen for the duration of the extraction process (24 days). The cores were then saturated by immersion in water until they reached a constant weight (8 days).

Basic Density

Basic density was determined using the test method described in "Australian and New Zealand Standard AS/NZS1080:3-2000 Timber – Method of test – Method 3: Density" (Standards Australia 2000). Green volume was measured using the displacement method described by Heinricks & Lassen (1970). Cores were weighed on a top-loading analytic balance to 0.00 g accuracy (AS/NZS 1080.3). After completion of the shrinkage measurements, cores were dried in a testing oven at 103°C for 24 hours. Oven-dried cores were weighed and basic density was obtained using Formula 1.

 $D_{b} = \frac{\text{Oven-dry weight (g)}}{\text{Green volume (cm^{3})}} \times 1000$ (1) where D_{b} is basic density.

Shrinkage Assessment

Assessment of cores

Cores were marked with indelible pencil at each end for radial measurement and at four positions (60% and 80% of core length) along the radial length for tangential measurement (four measurements per core, Fig. 1). Measurements were recorded using digital callipers with automatic data entry at 0.01 mm accuracy.

FIG. 1-Position of radial and tangential measurements on increment cores.

Cores were first measured in the green condition (saturated). They were then dried in conditioning cabinets at set temperature and relative humidity, and measured again when they reached 17% m.c., 12% m.c., and 5% m.c. so that unit shrinkage could be calculated. Shrinkage at each percentage moisture content was calculated for each position, and tangential shrinkage for each core was calculated by averaging the four measurements. All cores were also scanned at each stage of drying using a flatbed scanner. Cores were positioned on the scanner with the longitudinal direction at 90% from the line of scan so that the tangential dimension could be observed. The scanned images at 12% m.c. were assessed using the ImageJ software (National Institutes of Health) to measure changes in radial length between the two tangential marks on each half of the cores, thus avoiding any distortion at the pith.

Assessment of blocks

Of the 958 cored trees representing 152 families, 419 were felled and 3.2-m logs were transported to Southern Cross University for processing. Two shrinkage blocks (one from the northern and one from the southern side of the tree) of 25 mm (radial) \times 25 mm (tangential) \times 100 mm (longitudinal) dimension were cut from each log at a height of 1.3 m. The blocks were cut from the outer heartwood (approximately 40 to 80%), and marked on the radial and tangential faces at three locations along the longitudinal axis (as described by Kingston & Risdon 1961). Blocks were measured in the green condition and, as were the cores, dried in conditioning cabinets and measured at 17% m.c., 12% m.c., and 5% m.c.

Statistical Analysis

Family and provenance means analysis were generated using Microsoft Excel. Variance components, heritabilities, and genetic correlations were calculated using ASReml Version 2.00a (Gilmour *et al.* 2006). The model used in analysis constrained all variance components to be positive numbers, which meant calculated heritabilities were bound to be between -1.0 and 1.0. Although the trial was planted in a lattice row-column design, not all individual trees in the trial were used for the wood properties assessment. The limited subset of trees cored did not allow the inclusion of row, column, and plot effects in the model. Therefore the model used was simplified to a randomised complete block (Williams *et al.* 2002). The univariate mixed model fitted here (Equation 2) used provenance and replicate as fixed effects and individual tree as random effect. A separate pedigree file was used to define the genetic relationships of individual trees. Individual-tree, narrow-sense heritability estimates were calculated using Equation 3. An explanation of the abbreviations used to describe the results is presented in Table 2.

 $Y = \mu + PROV + REP + TREE + \epsilon$ where Y is the vector for each trait

(2)

Abbreviation	Unit	Trait
CBD	kg/m ³	Core basic density
С		Core
В		Block
Т	%	Tangential shrinkage
R	%	Radial shrinkage
17, 12	%	17% m.c., 12% m.c.
T:R		Ratio of tangential to radial shrinkage at 12% m.c.
m.c.	%	Moisture content
h^2		Heritability estimate, narrow-sense, single-tree
s.e.		Standard error
s.d.		Standard deviation
CV		Coefficient of variation

TABLE 2-Abbreviations used to present wood traits investigated in *E. pilularis* progeny trial.

 μ is the overfall mean for the trait PROV is the fixed, provenance effect REP is the fixed, replicate effect TREE is the random, genetic effect ϵ is the residual (random error)

$$h^2 = \sigma_t^2 / \sigma_a^2$$

where h^2 is the narrow sense heritability

 $\sigma_t{}^2$ is the individual tree variance

 σ_a^2 is the total phenotypic variance

RESULTS

Data Summary

A summary of data is presented in Table 3. Distortion of the cores at the pith in the early stages of drying was sufficient to prevent subsequent radial measurements in most of the samples. Tangential shrinkage was successfully measured from increment cores, but radial shrinkage at 12% was obtained from scanned images.

Mean tangential shrinkage was higher than that reported for mature native *E. pilularis* forest, but radial shrinkage was lower (Bootle 1983). The ratio of tangential to radial shrinkage was high for the cores (3:1) and higher for the blocks (4:1). Variability was high for all properties measured, with tangential shrinkage at 12% m.c. varying from 4.4% to 18.9% on cores and from 2.3% to 18.7% on blocks. The number of sample blocks available dropped from 419 to 340 because some of the logs were too small for processing, their form was too poor, internal defects were such that no clear sample could be cut, or the pith was so eccentric it was not possible to obtain blocks with true tangential and radial planes.

(3)

1n	cluding g	rowin paramete	ers assessed a	at 104 months	of age.	
Trait	n	Mean	s.d.	CV (%)	h^2	s.e.
Dbh	5465	18.59	4.82	0.26	0.20	0.04
HT	5462	20.73	4.45	0.21	0.27	0.04
Vol	5462	0.23	0.13	0.56	0.22	0.04
CBD	953	470.03	44.16	0.09	0.33	0.11
CT17	958	7.70	2.23	0.29	0.35	0.11
CT12	958	9.37	2.01	0.21	0.38	0.12
CT5	957	11.07	2.04	0.18	0.37	0.11
CR12 (scans)	849	3.89	1.77	0.46	0.02	0.10
T:R core	847	3.05	2.54	0.83	0.15	0.12
BT17	340	7.89	2.84	0.36	0.48	0.26
BT12	336	8.65	2.62	0.30	0.12	0.24
BT5	334	12.75	3.24	0.25	0.27	0.27
BR17	339	2.44	1.35	0.55	0.11	0.25
BR12	337	2.73	1.29	0.47	0.08	0.24
BR5	334	5.02	1.75	0.35	0.21	0.26
T:R block	336	4.11	3.89	0.95	0.00	0.00

TABLE 3–Data summary for the properties assessed in the *E. pilularis* progeny trial, including growth parameters assessed at 104 months of age.

Genetic Parameters

Estimates of genetic parameters are presented in Tables 4 to 6. Tangential shrinkage was measured at three different stages of drying so that unit shrinkage could be measured.

Heritability estimates were moderate for CT shrinkage (range from 0.35 to 0.37 depending on moisture content) and CBD (0.33), and very low for CR12 (scans) (0.02, Table 5) calculated from scan measurements. No heritability estimates for radial shrinkage measured on cores were significant. Overall standard errors for blocks were higher than for cores, probably because a smaller sample size of blocks was measured. Although heritabilities for shrinkage using blocks were high, these high standard errors meant only the estimate for BT17 was significant. The ratio of tangential to radial shrinkage had a low heritability estimate for the cores (0.15) and was nil for the blocks (Table 3).

Phenotypic correlations between core and block tangential shrinkage were very consistent and ranged from 0.56 to 0.61 (Table 4). CR12 (scans) and BR12 had only a weak phenotypic correlation (0.19) (Table 5).

Genetic correlations were all significant for tangential shrinkage (Table 4). Standard error is not reported where the analyses were bound (restricted to 1). The highest genetic correlation was 0.999 between BT12 and all three CT stages (Table 5). CBD had a negative correlation with tangential shrinkage (Table 6).

			Cores			Blocks	
		CT17	CT12	CT5	BT17	BT12	BT5
Cores	CT17	0.35 (0.11)	0.90 (0.05)	0.94 (0.03)	0.63 (0.26)	(punod) 66.0	0.90 (0.43)
	CT12	0.91	0.38 (0.12)	$0.98\ (0.01)$	(punod) 66.0	(punod) 66.0	(punoq) 66.0
	CT5	0.91	0.96	$0.37 \ (0.11)$	0.87 (0.22)	(punoq) 66.0	(punoq) 66.0
Blocks	BT17	0.56	0.58	0.59	0.48 (0.26)	(punod) 66.0	$0.88\ (0.13)$
	BT12	0.55	0.56	0.57	0.86	0.12 (0.24)	(punoq) 66.0
	BT5	0.59	0.60	0.61	0.82	0.82	0.27(0.26)

TABLE 5–Heritability estimates (diagonal), phenotypic correlations (below the diagonal), and genetic correlations (above the diagonal) for radial shrinkage traits; standard errors in parentheses. There were no significant genetic correlations.

		Cores		Blocks	
		CR12 (scans)	BR17	BR12	BR5
Cores	CR12 (scans)	0.02 (0.09)			
Blocks	BR17	0.25	0.11 (0.25)	0.65 (0.85)	0.72 (0.60)
	BR12	0.19	0.79	0.08 (0.24)	0.65 (0.72)
	BR5	0.17	0.65	0.68	0.21 (0.26)

TABLE 6–Heritability estimates (diagonal), phenotypic correlations (below the diagonal), and genetic correlations (above the diagonal) for core basic density and shrinkage at 12% m.c. Standard errors are given in parentheses, and significant estimates and genetic correlations in bold type. Standard error is not reported where the analyses were bound (restricted to 1).

	BT12	CT12	CBD
BT12	0.11 (0.21)	0.99 (bound)	-0.99 (bound)
CT12	0.56	0.36 (0.10)	-0.57 (0.19)
CBD	-0.13	-0.12	0.33 (0.10)

Analysis of Sample Selection

Analysis of growth traits for the Hannam Vale trial in early 2006 produced significant heritability estimates of 0.27 for tree height and 0.20 for diameter at breast height, confirming the quality of the progeny trial design (Forests NSW, unpubl. data). However, the reduced variability in growth imposed by the pre-selection based on growth affected the current experimental design and potentially contributed to the reduced heritability estimates observed. Estimates of genetic parameters obtained for the whole balanced trial are compared in Table 7 with the estimates obtained for the reduced unbalanced design of the trees selected for wood quality assessment.

TABLE 7–Genetic parameter estimates of growth traits for the Hannam Vale progeny trial compared to the same estimates for the sample selected for the wood quality assessments.

Trait	Whole trial	Wood quality selection
<i>n</i> ind/fam	24	3–14 (6.6 av.)
Total <i>n</i> ind	5465	958
Height h ² (s.e.)	0.27 (0.04)	0.12 (0.10)
Diameter h^2 (s.e.)	0.20 (0.04)	0.02 (0.08)

DISCUSSION Use of Increment Cores

The method of assessing shrinkage tested in this study was based on past results and recommendations of studies involving eucalypts (Hamilton et al. 2004; Harwood et al. 2005; Bandara 2006), and using whole increment cores for ease, speed, and cost efficiency. It is conceivable that more than four tangential measurements per core, or measurements representing particular growth stages within a year, or minimum tangential diameter in addition to the set percentages of core radius could improve accuracy of the data; and these would be recommended in future studies. Despite this, significant heritability estimates were achieved with four tangential measurements per core. However, radial measurements using the length of whole cores were not successful in assessing heritability of this trait. Future studies could explore the use of the tangential marks to measure radial shrinkage directly on the cores using callipers. Reduced accuracy is expected on such radial measurements because radial shrinkage is typically half that of tangential shrinkage. One way of alleviating this problem may be to take an extra tangential measurement closer to the pith (but making sure to avoid the pith where the distortion occurs). This would provide a longer distance for radial shrinkage measurement as well as an extra tangential measurement.

Genetic Variability in Shrinkage

Reports of heritability estimates for tangential and radial shrinkage vary widely. In several studies, including this one, tangential shrinkage has consistently been found to be heritable. However, heritability of tangential shrinkage measured on test blocks at 12% m.c. was not significant. Heritability estimates for tangential shrinkage measured on cores at all moisture contents, and for blocks at 17% m.c. was consistent with results reported in other studies (Tables 4, 8).

Radial shrinkage measurements from scans did not correlate well with radial shrinkage measured on test blocks. Measuring radial shrinkage directly from tangential marks on cores may be worth investigating further, although the present study showed no indication of radial shrinkage (and therefore T:R) being controlled by genetic processes. This is consistent with at least one other study on *E. grandis* (Bandara 2006).

The strength of the genetic correlations found in this study between tangential shrinkage measured on increment cores and tangential shrinkage measured on shrinkage blocks is not sufficient to advocate the systematic use of increment cores in genetic assessments of linear shrinkage. Increment cores may, however, be used as a guide for testing relationships, but more accurate assessments using traditional methods are still required.

Source (fam.)	Species	T shrinkage	R shrinkage	n (ind.)	n
Henson <i>et al.</i> 2004	E. dunnii	0.70 (0.31)	0.56 (0.31)	179	47
Harwood <i>et al</i> . 2005	E. dunnii	0.63 (0.24)* 0.30 (0.18)†		215	47
Bandara 2006	E. grandis	0.29 (0.15)	0.06 (0.13)	320	50
S.D.Verryn & P.Turner unpub	<i>E. grandis</i> l. data	_	0.41 (0.14)	472	90
This study – Cores (12% m. – Blocks (12% m	c.)E. pilularis n.c.)	0.36 (0.10) 0.11 (0.21)	0.10 (0.09) 0.17 (0.21)	999 354	153 129

TABLE 8–Reported heritability estimates for tangential and radial shrinkage in plantation eucalypts.

* Before reconditioning,

† After reconditioning

The motivation behind the present study came from a *E. dunnii* trial conducted at Boambee State Forest, NSW, in 2004 (Henson *et al.* 2004). Tangential shrinkage was measured in boards and in cores dried under harsh conditions in order to enhance differences between families in their tendency to collapse. Results from the two studies are compared in Table 9. The phenotypic correlation between the two methods was higher for *E. pilularis* at Hannam Vale than for *E. dunnii* at Boambee. The very high genetic correlation obtained for *E. dunnii* at Boambee is supported by the present results, despite the different drying schedules employed on the Boambee and Hannam Vale material. What remains to be ascertained, is whether either of these methods correlates with actual drying performance in sawn boards dried under standard industrial conditions.

There are only limited reports on relationships between basic density and linear shrinkage. Both positive and negative correlations have been found, sometimes

	Phenotypic correlation	Genetic correlation (s.e.)
Boambee <i>E. dunnii</i> Tangential shrinkage (Core and 25 × 100 mm board)	0.480	0.996 (0.13)
HannamVale <i>E. pilularis</i> Tangential shrinkage (Core and shrinkage block)	0.559	0.999 (bound)

 TABLE 9–Comparison of phenotypic and genetic correlations between the present study and *E. dunnii* progeny trial growing at Boambee State Forest, NSW.

for the same species (Bandara 2006; Wu *et al.* 2006; Chafe 1985, 1994; Sesbou & Nepveu 1978). In the present study basic density had a mild but negative impact on tangential shrinkage, a favourable situation indicating that selecting for increased basic density will tend to somewhat reduce tangential shrinkage. Pilodyn measurement had a high negative genetic correlation (-0.999 (bound)) with core basic density (data not shown), pointing to the possibility of using pilodyn readings as an indirect measure for both density and tangential shrinkage.

Economic Benefits of using Core Samples for Wood Quality Assessment

Increment cores are already established as a reliable, cost-efficient method of assessing basic density in standing trees (Raymond *et al.* 1998). The present study provided the opportunity to assess their cost-efficiency in measuring shrinkage properties. The numbers of person-days required in this study to process the equivalent number of increment cores and shrinkage blocks are compared in Table 10. It was assumed, for the purpose of the comparison, that genetic assessments require the investigation of 120 families and 10 individuals per family. One sample per tree was collected from 1200 trees for the increment core method, but two samples per tree were obtained from 1200 trees for the test block method. One hundred increment cores can be obtained per day with a team of three people using a motorised corer, for a total of 36 work days. In contrast, standard test blocks require a team of three people to fell, label, and cut 1-m billets from 40 trees per day for a total of 90 work days, to obtain the 1200 billets. Additionally, a team of four people is needed to process 1-m billets into standard test blocks ($100 \times 25 \times$ 25 mm) averaging 60 billets per day, giving a total of 80 work days for the 1200 logs. Measurements at 17%, 12%, and 5% m.c., including weighing of samples, took a comparable amount of time at each stage, but in the green condition samples also had to be marked.

The analysis presented in Table 10 shows that labour costs for the destructive method are expected to be around three and a half times those for the non-destructive method. The higher cost for transport of logs to the processing facility compared to transport of cores was not included in the above analysis. If the value of the retained trees is also taken into account, then the cost efficiency of increment

	0	0		
	Sample collection	Sample preparation	Measuring and weighing	Total
Increment cores Shrinkage blocks	36 90	80	29 58	65 228

TABLE 10–Comparison of person-days required for collecting and processing 1200 samples for shrinkage assessments using increment cores and standard test blocks.

cores increases further. Superior trees can thus be assessed and retained in the breeding population to produce offspring in the future. The reduced cost of this non-destructive assessment method, however, has to be balanced against the method's accuracy.

CONCLUSIONS

The present study found moderate heritability estimates for tangential shrinkage measured on increment cores and on shrinkage blocks in a *E. pilularis* progeny trial, consistent with estimates found in other studies. The strength of the genetic correlation was not sufficient to eliminate the need for destructive assessment, despite the much lower cost of the non-destructive method. However, it was found that selecting for higher basic density using pilodyn may indirectly contribute to reducing tangential shrinkage. Less linear shrinkage and less variability in shrinkage reduce the need for over-cutting in sawmills, improving recovery and product uniformity. Radial shrinkage and the ratio of tangential to radial shrinkage were not heritable. Further investigations are required to establish a reliable, cost-effective, and non-destructive method of measuring radial shrinkage, if a reduction in the occurrence of cupping is to be achieved when young plantation logs are being backsawn.

ACKNOWLEDGMENTS

Many individuals from various organisations were involved in collecting and processing the samples used in the study. Among them were staff from Forests NSW and Ensis Wood Quality Laboratory at Clayton, Terry Copley of Queensland DPI&F, Graeme Palmer, Peter Bligh-Jones, and numerous forestry students from Southern Cross University.

REFERENCES

- ARNOLD, R.J.; JOHNSON, I.G.; OWEN, J.V. 2004: Genetic variation in growth, stem straightness and wood properties in *Eucalyptus dunnii* trials in northern New South Wales. *Forest Genetics 11*: 1–12.
- BANDARA, K.M.A. 2006: Genetic improvement of solid wood product value of subtropical eucalypts: a case study of *Eucalyptus grandis* and *E. dunnii*. PhD Thesis, ANU. 215 p.
- BOOTLE, K.R. 1983: "Wood in Australia: Types, Properties and Uses". McGraw-Hill, Sydney, 443 p.
- CHAFE, S.C. 1985: The distribution and interrelationships of collapse, volumetric shrinkage, moisture content and density in *E. regnans* F. Muell. *Wood Science and Technology* 19: 329–345.
- —— 1994: Relationships between shrinkage and specific gravity in the wood of *Eucalyptus*. *Australian Forestry* 57: 59–61.
- COWN, D.J.; YOUNG, G.D.; BURDON, R.D. 1992: Variation in wood characteristics of 20-year-old half-sib families of *Pinus radiata*. *New Zealand Journal of Forestry Science* 22: 63–76.

- DONNELLY, R.; FLYNN, R.; SHIELD, E. 2003: "The Global *Eucalyptus* Wood Products Industry — A progress Report on Achieving Higher Value Utilisation". DANA Publishing Limited, New Zealand. 275 p.
- DOWNES, G.M.; HUDSON, I.L.; RAYMOND, C.A.; DEAN, G.H.; MITCHELL, A.J.; SCHIMLECK, L.R.; EVANS, R.; MUNERI, A. 1997: "Sampling Plantation Eucalypts for Wood and Fibre Properties". CSIRO Publishing, Melbourne. 132 p.
- GILMOUR, A.R.; GOGEL, B.R.; CULLIS, B.R.; THOMPSON, R. 2006: "ASReml User Guide release 2.0". NSW Department of Primary Industries, Australia.
- GREAVES, L.B.; BORRALHO, N.M.G.; RAYMOND, C.A. 1997: Breeding objectives for plantation eucalypts grown for production of kraft pulp — density for pulp. *Forest Science* 43: 465–472.
- GREAVES, B.L.; BORRALHO, N.M.G.; RAYMOND, C.A.; FARRINGTON, A. 1995: Use of a Pilodyn for the indirect selection of basic density in *Eucalyptus nitens*. *Canadian Journal of Forest Research 26*: 1643–1650.
- HAMILTON, M.; POTTS, B.; HARWOOD, C.; APIOLAZA, L.; GORE, P. 2004: Comparison of non-destructive assessment techniques for shrinkage and collapse in *Eucalyptus nitens*. In "Eucalyptus in a Changing World", Proceedings of IUFRO Conference, Aveiro, Portugal, 11–15 October.
- HARDING, K.J.; COPLEY, T.R. 2000: Wood property variation in Queensland-grown slash × caribbean pine hybrids. *In* "Hybrid Breeding and Genetics of Forest Trees", Proceedings of QFRI/CRC-SPF Symposium, Noosa, Queensland, 9–14 April.
- HARWOOD, C.; BANDARA, C.; WASHUSEN, R.; NORTHWAY, R.; HENSON, M.; BOYTON, S. 2005: Variation in wood properties of plantation-grown *Eucalyptus dunnii* relevant to solid-wood products. *FWPRDC Report PN04.3003*.
- HEINRICKS, J.F.; LASSEN, L.E. 1970: Improved technique for determining the volume of irregularly shaped blocks of wood. *Forest Products Journal 20*: 24.
- HENSON, M.; SMITH, H. 2007: *Eucalyptus pilularis* Smith tree improvement in Australia. *Australian Forestry* 70: 4–10.
- HENSON, M.; BOYTON, S.; DAVIES, M.; JOE, B.; BANDARA, K.; MURPHY, T.; VANCLAY, J. 2004: Genetic parameters of wood properties in a 9-year old *E. dunnii* progeny trial in NSW, Australia. Poster paper *in "Eucalyptus* in a Changing World", Proceedings of IUFRO Conference, Aveiro, Portugal, 11–15 October.
- KINGSTON, R.S.T.; RISDON, C.J.E. 1961: Shrinkage and density of Australian and other south-west Pacific woods. *CSIRO Division of Forest Products Technological Paper No. 13.*
- KUBE, P.; RAYMOND, C. 2002: Predicting whole-tree basic density and pulp yield using wood core samples in *E. nitens. Appita Journal 55*: 43–48.
- LAURENCE, R.S.; ANTHONY, J.M.; RAYMOND, C.A.; MUNERI, A. 1999: Estimation of basic density of *Eucalyptus globulus* using near-infrared spectroscopy. *Canadian Journal of Forest Research* 29: 194–201.
- NOLAN, G.; GREAVES, B.; WASHUSEN, R.; PARSONS, N.; JENNINGS, S. 2005: Eucalypt plantations for solid wood products in Australia — a review "If you don't prune, we can't use it". *FWPRDC Report PN04.3002*.
- RAYMOND, C.A. 2002: Genetics of *Eucalyptus* wood properties. *Annals of Forest Science* 59: 525-531.

- RAYMOND, C.A.; MUNERI, A. 2001: Non-destructive sampling of *Eucalyptus globulus* and *E. nitens* for wood properties. I. Basic density. *Wood Science and Technology* 35: 27–39.
- RAYMOND, C.A., MUNERI, A.; MacDONALD, A.C. 1998: Non-destructive sampling for basic density in *Eucalyptus globulus* and *E. nitens. Appita Journal 51*: 224–228.
- SESBOU, A.; NEPVEU, G. 1978: Intraspecific variability of shrinkage with collapse and wood density in *Eucalyptus camaldulensis*. *Annales des Sciences Forestières* 35: 237–263.
- STANDARDS AUSTRALIA 2000: Australian and New Zealand Standard AS/NZS1080:3-2000 Timber – Method of test – Method 3: Density. Standards Australia International Ltd, Strathfield, Australia.
- WASHUSEN, R.; ILIC, J. 2001: Relationship between transverse shrinkage and tension wood from three provenances of *Eucalyptus globulus* Labill. *Holz als Roh- und Werkstoff 59*: 85–93.
- WEI, X.; BORRALHO, N.M.G. 1997: Genetic control of wood basic density and bark thickness and their relationships with growth traits of *Eucalyptus urophylla* in South East China. *Silvae Genetica* 46: 245–250.
- WILLIAMS, E.R.; MATHESON, A.C.; HARWOOD, C.E. 2002: "Experimental Design and Analysis for Tree Improvement" 2nd ed. CSIRO Publishing, Collingwood, Australia. 214 p.
- WU, Y.Q.; HAYASHI, K.; LIU, Y.; CAI, Y. 2006: Relationships of anatomical characteristics versus shrinkage and collapse properties in plantation-grown eucalypt wood from China. *Journal of Wood Science* 52: 187–194.
- YANG, J.L.; PONGRACIC, S. 2004: The impact of growth stress on sawn distortion and log end splitting of 32-year-old plantation blue gum. *FWPRDC Report PN03.1312*.