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ABSTRACT

Statistical techniques for assessing the evidence of heritability (4*) of a highly non-
normal random variable from limited-sized datasets were applied to internal checking in
Pinus radiata D. Don wood. Bayesian hierarchical models for ordinal logistic regression
with and without random family effects were fitted and compared using the technique of
pseudo-priors to estimate the Bayes factor. Model parameters and Bayes factors were
estimated using Gibbs sampling, and implemented using the computer program BUGS
and importance sampling. Bayes factors 0f203, 41.7 were obtained for the total number
of checks and number of rings with checks. respectively. In the model assuming non-zero
heritability, estimates and 95% credible intervals for A2 were 0.64 (0.15-0.996) and 0.60
(0.06-0.997) respectively. In contrast, non-Bayesian methods including ANOVA with
transformed variables and a non-Bayesian ordinal logistic regression analysis, failed to
detect any effects for p<0.05.

Keywords: heritability; wood properties; Bayesian analysis; hierarchical models; BUGS;
Gibbs sampling; pseudo-priors; ordinal logistic regression; non-normality;
robust estimation: internal checking; oven-dry method; Pinus radiaia.

INTRODUCTION

Recently there has been an increase in reported incidence of problems with internal
checking in Pinus radiata. Researchers are attempting to understand the causes of checking
so that the problem can be managed in current stands and avoided in future forests. In this
paper we report our examination of statistical evidence for a genetic component of
susceptibility to internal checking.

Internal checking, or intra-ring checking, is a wood quality problem whereby splits or
checks occur within growth rings of wood. Internal checking affects the suitability of wood
from pruned logs for high-value clearwood products from some stands. These checks may
become visible only after machining or other expensive processing, so that even a small
incidence of checking can have a significant quality cost.
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The amount of checking, which usually occurs after kiln drying of wood (although checks
in green timber have been observed from some of the worst-affected stands), depends on the
severity of the drying schedule. A standardised treatment for oven drying of discs was
developed by M.McConchie and reported by D.McConchie (1999). This treatment is
quicker (cheaper) and also more severe than would normally be used, giving the opportunity
to observe more checks of trees than would be found with typical wood processing, and hence
to obtain more informative data on the susceptibility of trees to checking.

Two response variables were studied: the total number of checks, and the number of rings
with checks. The total number of checks may be a good indicator of the quantity of pieces
degraded when alog is cutinto boards. The number of rings with checks is of interest because
most checks take place in the sapwood just beyond the zone of heartwood formation. If the
trees were allowed to grow on, these rings would form heartwood and most probably not
form checks. Thus, trees with many rings with checks are considered more likely to have a
checking problem at harvest than trees with many checks limited to a small number of rings.

Variance components require considerably more data to estimate than means. Therefore
there is often considerable uncertainty associated with estimates of heritabilities, which are
estimated as ratios of variance component expressions, yet heritability estimates are often
given without standard errors. To study a non-normal random variable with a limited amount
of data it is important to use a statistical method that does not rely on large sample sizes or
normality for its validity, and can give distributional information on the estimate. The
methodology which has these properties is Bayesian hierarchical modelling based on the
ordinal logistic regression model with random effects with estimation using Gibbs sampling
(see, e.g., Gelfand et al. 1990).

Bayesian analysis proceeds by combining prior knowledge (represented mathematically
as a “prior distribution” on the unknown parameters) with the “likelihood” or statistical
model which defines a probability distribution for the observed data in terms of the unknown
parameters, obtaining a “posterior distribution” for the parameters which represents our
knowledge after observing the data.

The output of the Gibbs sampler is a sample chain that is approximately a sample from
the posterior distribution of model parameters. Estimates of the distribution of any quantity
of interest can easily be obtained directly from this sample, avoiding the need to solve the
integrals that are otherwise the main technical difficulty in applying Bayesian methods.
Implementing the Gibbs sampler for a problem can be costly, requiring a significant amount
of complex custom programming. If, however, a model can be specified and implemented
using BUGS (a high level language and program for specifying and implementing a large
class of Bayesian hierarchical models using Gibbs sampling — Spiegelhalter et al. 1995),
results can be obtained with an order of magnitude less time and effort. Our preferred model
will notrun in BUGS, but fortunately a more generic model (with different prior distributions)
will. The results for the preferred model can be derived from the BUGS output using
importance sampling (see, e.g., Owen & Zhou 2000), which is a technique for sampling from
one distribution, given samples from an approximating distribution.

Many papers have been written estimating heritability. Most modern approaches use
REML (Patterson & Thompson 1971) to estimate the variance components. Recently, some
authors have used Gibbs sampling to estimate genetic parameters, e.g., Magnabosco et al.
(2000) and Sorensen et al. (1995).
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A general outline of the method and the results are presented here; further details,
including the implementation of the Gibbs sampler in BUGS and the Bayes factor calculation
have been given by Ball (in prep.).

MATERIALS AND METHODS

Material was obtained from a “268 series” factorial trial of P. radiata growing on a site
in the central North Island of New Zealand. The trial consisted of single full-sib families in
rectangular blocks of 7 x 7 =49 trees. The families assessed had been selected, from within
a geographically relatively uniform area of the trial, to give a range of wood properties for
astudy of juvenile wood. The families were not unrelated: there were 23 distinct parents with
some parents involved in several families, compared with the 36 distinct parents which
would be needed for unrelated families. Eight trees per family were selected from the inner
5 x 5 array within each block.

Discs for internal check assessment were collected from the breast height position of butt
logs on the eight trees (all 14 years old in 1999) from each of the 18 selected families (144
trees). Discs were split in half, and one half was assessed for internal checking using the
“oven dry method” developed by M.McConchie and described by D.McConchie (1999).
The number of checks was recorded for each annual ring of each disc: however, only the total
number of checks per disc and the number of rings with checks are analysed here.

Statistical Methods

The number of checks can be very large in some trees, giving a highly non-normal
distribution with a high degree of within-family variation in some families. To avoid
problems with distributional assumptions not being satisfied due to the somewhat wild
nature of the distribution, the number of checks and number of rings with checks were
analysed as categorical variables. For the total number of checks, the categories used were
0, 1-5, 6-20, and > 20 checks per disc. For the number of rings with checks, the categories
used were 0, 1-3, and > 3. These category sizes correspond roughly to none, low, medium,
or high levels of checking.

The categorical data were analysed by ordinal logistic regression (McCullagh 1980),
where category probabilities are related through the logistic link function to a linear model
or “linear predictor”. The linear predictor is similar to the linear mixed model which would
be fitted ina REML analysis of normal data. Two models were fitted: Model I withno genetic

variance (or 42 = 0) and random within-family random error effects with variance o2, and

Model 2 where, additionally, a random family effect for each family (with variance o%) was
fitted.

The heritability was estimated as
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A Bayesian approach was taken. To assess the evidence for non-zero heritability, the
Bayes factor
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was estimated. The numerator of (2) is the probability of the data under Model 2. and the
denominator is the probability of the data under Model 1. Thus, the Bayes factor measures
how much more likely the data are under Model 2 than Model 1.

The other main quantity of interest is the posterior distribution of 42 in Model 2.

In order to apply Bayesian statistics it is first necessary to specify prior distributions for
parameters in the model, whose distributions are not determined by other parameters.
Following the recommendations of Jeffreys (1961), the Jeffreys non-informative prior for
a proportion is used for 42, and diffuse priors (containing little or no information) are given
for the parameters 6; (cut-points in the ordinal logistic regression) and the within-family
variance o2 . This gives a standard or “objective” approach to estimating the Bayes factor
which can be applied in the absence of prior information.

Posterior distributions of parameters for each model, which represent our knowledge
about a parameter after using the data, were estimated by Gibbs sampling and importance
sampling. The method of pseudo-priors (Carlin & Chib 1995) was used to construct a Gibbs
sampler for estimating the Bayes factor (see Ball in prep. for details).

RESULTS

Counts of the number of trees in each internal checking class for each family are given
in Table 1.

Boxplots (Hoaglin ez al. 1983) of the total number of checks assessed for cach tree are
shown in Fig. 1, and for the number of rings with checks in Fig. 2. The solid dots represent
the medians of the data and the limits of the boxes are given by the upper and lower quartiles.
The dotted lines or whiskers give an indication of the range of the data and are obtained by

TABLE 1-Number of trees per family in each internal checking class

Family Total checks No. rings with checks
0 -5 6-20 >20 0 1-3 >3
1 3 1 2 2 3 3 2
2 3 1 2 2 3 3 2
3 3 2 1 2 3 3 2
4 3 0 4 1 3 2 3
5 6 2 0 0 6 2 0
6 6 1 1 0 6 2 0
7 7 1 0 0 7 1 0
8 5 2 ] 0 5 3 0
9 2 1 4 1 2 5 1
10 5 2 1 0 5 2 |
11 6 2 0 0 6 2 0
12 7 0 0 1 7 1 0
13 5 1 1 1 5 1 2
14 4 1 2 1 4 2 2
15 4 2 1 1 4 4 0
16 1 0 3 4 1 3 4
17 4 1 2 1 4 2 2
18 7 1 0 0 7 1 0
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FIG. 1-Boxplots of total number of internal checks per tree by family.
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FIG. 2-Boxplots of the number of rings with checks per tree by family.
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extending 1.5 times the interquartile range from the quartiles, then moving back to the nearest
data point. Data points (possible outliers) outside the whiskers are plotted individually with
an open circle.

Note the wide range in the total number of checks per tree within families. All families
had one tree or more with checks and one tree or more with no checks. The best two families
had only one tree with checks, while the worst family had seven out of eight trees with checks
(Table 1). Family 12 had only one tree with checks, but this tree was in the worst checking
class.

For Models 1 and 2, from 400 000 iterations of the Gibbs sampler the Raftery and Lewis
convergence diagnostic (Raftery & Lewis 1992) indicated that the median could be
estimated to within 5% and the 2.5%, 97.5% quantiles to within 1.25% for each model
parameter in under 200 000 iterations.

For the Bayes factor estimation runs, from 1 000 000 iterations the Raftery and Lewis
convergence diagnostic indicated that the proportion of times Model 1 was selected was
estimated to within £0.023, 95% of the time.

Parameter Estimates
Posterior model statistics for A2 are shown in Table 2.

The prior and posterior distributions for 42 for the total number of checks and number of
rings with checks are shown in Fig. 3. It is instructive to compare the prior and posterior
distributions for a parameter, to see the influence of the information from the data.

Posterior probabilities for Model 2 and Bayes factor estimates are given in Table 3.

TABLE 2—Posterior statistics for 4. Estimates are based on 400 000 iterations of the Gibbs sampler

for Model 2.

Total number of checks Number of rings with checks
Mean 95% ci Median Mean 95% ci Median
0.64  (0.153-0.996) 0.66 0.60  (0.062-0.997) 0.60

DISCUSSION AND CONCLUSIONS

Some families had only one tree with a low number of checks and the rest with no check,
suggesting family differences (Fig. 1) to many observers. However, the nature of variability
of internal checking makes these differences difficult to pin down statistically. The
“standard” statistical methods which were tried, including a naive ANOV A with the original
data transformed and a non-Bayesian ordinal logistic regression analysis, failed to detect any
effects for p<0.05.

In general, categories were chosen to give a reasonable number of observations in each
class. As with transformations, a different choice is effectively a different trait which would
result in different statistics being obtained. Thus, it is desirable to standardise the category
definitions.




84 New Zealand Journal of Forestry Science 31(1)

(b) ()

o o
[V} [aV}
=
‘v 0 Lt
c - -
[
o
> = o
.:E_)’
kS
o p pt
o
(] <o
o =]
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

h2

FIG. 3—Prior and posterior distributions 4%. The prior distribution for A2 is shown in panel (a),
and posterior distributions for /* for the total number of checks and number of rings
with checks are shown in panels (b}, (c).

TABLE 3-Posterior probability for Model 2 (42 > 0) and Bayes factor estimates. Estimates are based
on 1 000 000 iterations of the Gibbs sampler for comparing Models 1 and 2, using the
method of pseudo-priors. Posterior probabilities assume equal prior probability of 0.5 for
Models | and 2.

Pr(h” > 0) 95% ci Bayes factor 95% ci
Total number of checks 0.995 (0.994-0.996) 204 (183-228)
Number of rings with checks 0.976 (0.974-0.978) 41 (38-44)

The method of this paper shows evidence for non-zero heritability of internal checking.
Based on a non-informative prior for the within-family variance and a non-informative
Jeffreys prior for 42, the Bayes factors 0f 204, 41, were obtained representing strong evidence
for heritability for both traits.

Implicit in the model is the genetic prior constraint 0 < 4% < 1. This genetic prior constraint
certainly holds for the true heritability, although the proportion of variance that is within
family could conceivably be higher than 1/2 if, for example, there were maternal effects.
These are not considered likely, but if they do exist would not be estimable in the current
experiment. Further investigation showed Bayes factors with the constraint are almost twice
the unconstrained values—demonstrating that it is certainly worth using prior information,
if available.

The heritability of internal checking may be quite high. The heritability of the linear
predictor for the total number of checks under Model 2 was estimated to be 0.64 with a 95%
credible interval of 0.15-0.996, and 0.60 with a 95% credible interval of 0.06-0.997 for the
number of rings with checks. (Note: unlike confidence intervals from ANOVA, the credible
intervals automatically lie within the range of the parameter, i.e., are between 0 and 1.)
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Some wood-quality traits, including internal checking, are substantially more expensive
to assess than the traits commonly assessed in tree breeding programmes. This study was
not intended to be definitive, but rather to provide preliminary evidence for heritability to
support the case for further studies, using material available from a study designed for other
purposes. Consequently, the experimental design was not determined for the purpose of
estimating heritability of internal checks and the sample sizes were not as large as we would
like. The experimental design consisted of unreplicated single family blocks, which is not
good for estimating heritability, as block level spatial variation is confounded with between-
family variation. This may result in an upwards bias in our heritability estimates, and
evidence for heritability is. strictly speaking, evidence for either heritability or block-level
spatial variation. It can be argued that if spatial variation has been appropriately modelled,
the remaining variation is genetic. We are currently attempting to fit 3—6 “super-blocks”
which would strengthen the case that the block-level variation is likely to be family variation.
The best approach is, however, to obtain further data from more suitable trials.

The expense of wood quality assessments also means that the number of trees assessed
per family is likely to be too low to rely on the Central Limit Theorem to give approximate
normality. Consequently, an approach such as that used here will be necessary.

There were 23 distinct parents with parents involved in several families, compared with
the 36 distinct parents which would be needed to have unrelated parents. We have not
considered the inter-relationship between families here: this could be incorporated in the
model but only a small difference (increase) in the heritability estimate would be expected.
Our model is based on conditional independence—conditional on the parental genotypes,
the progeny in a family are independent. This still holds, and within family variance is
unaffected, when some parents are common between families. The between family variance
is estimated in our model from the variation between family means, which are the mean of
parental values. The sample spaces for a genetic sample of family means obtainable from
23 parents (1/2 x 23 x 22 =253 possible matings) and that obtainable from 36 parents (1/2
x 36 x 35 = 630 possible matings) are both close to representative of the infinite population.

Our interest is in establishing evidence for between-family variation rather than in a
precise estimation of heritability for the purpose of estimating breeding values or genetic
gain. Since we have full-sib families, our heritability will contain some non-additive
variation in addition to the additive variation and hence would be expected to be intermediate
between the narrow-sense heritability which determines the gain from family selection and
broad-sense heritability which applies when selecting clones. To obtain unbiased estimates
of the narrow-sense heritability, half-sib families are needed; however, twice as many half-
sib families would be needed to obtain equivalent precision.

Although we have evidence for heritability, the precision of our estimates of heritability
is low, as indicated by the range of the 95% credible intervals in Table 2, and further
investigation with larger sample sizes is warranted. Comparable data from a sample size of
72 families (four times the size of the present study) would give heritability estimates with
standard errors approximately half the size of those in Table 2, or approximately 0.13,
comparable to most heritability estimates. The main proviso is that the incidence of checking
must be at a level to enable efficient estimation of checking. The data analysed here, with
some checking expressed in all families, and at least one tree from each family without
checking, would be close to optimal for these purposes.
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The Gibbs sampler for the ordinal logistic model with random family effects was
successfully implemented in BUGS and enables estimation of posterior distribution of
heritability of internal checks. There was no problem fitting the model to binary multinomial
data derived from the raw trait values, but some prior information or bound on the variance
components is needed to ensure parameters remain in a numerically feasible region.

Sorensen et al. (1995) developed a Gibbs sampler to estimate sire effects and variance
components for a “threshold model” with categorical data, assuming the observed categories
result from a “liability” (an unobserved normally distributed normal random variable) which
was treated as an unknown parameter for each observation in their model. Their underlying
model was, effectively, similar to our ordinal logistic regression model. By comparison, our
approach is more direct, avoiding the need for unknown “liability” parameters in the model.
They reported “inferences in good agreement with approximate maximum likelihood” for
their example, with a total of 2674 offspring in 82 half-sib families. In general, for parameter
estimates and confidence intervals, this is expected with sufficiently large sample sizes.

Bayesian and non-Bayesian methods for testing “precise hypotheses” such as no-
heritability vs heritability are substantially different, however. To assess evidence for
heritability, the Bayes factor comparing the probability of the data under alternative models
is estimated. The Bayes factor gives a more rigorous and meaningful test for scientific
hypotheses than traditional hypothesis tests and p-values (Berger & Berry 1988). For
example, the interpretation of the Bayes factor as evidence does not depend on sample size;
that for p-values does.

Previously, non-Bayesian methods had the advantage in computability and range of
methods available. Now, with modern computers and the availability of algorithms and
software for Gibbs sampling, and other Monte Carlo Markov chain methods, the computational
difficulties of Bayesian modelling can be overcome, using conceptually simple but
computationally intensive methodology. Bayesian methods now have the advantage in terms
of ability to fit realistic models, and ability to compute probabilities without the need for
asymptotic and distributional assumptions. This is in addition to the advantage of posterior
probability distributions for statistical inference or optimal decision-making that they have
always had. We recommend them to the readers of this journal.
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