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Abstract

Background: Precision in describing plantation attributes is a key requirement for forestry managers and inventory
surveys aim to extract the most precise information possible using the smallest number of plots. This paper
quantifies the potential efficiencies to be gained by using Light Detection and Ranging (LiDAR) data as an aid to
estimation of standing timber volume in softwood plantations. A range of inventory design and estimation
methods were investigated in terms of their overall predictive efficiency.

Methods: Field measurements representing four different populations from two Pinus radiata D. Don plantations
in New South Wales, Australia, were used to inform statistical models which were then employed to simulate
populations of inventory plots. These plots were then “surveyed” using a variety of simulated sampling strategies to
quantify the benefits from using LiDAR data as auxiliary information. Model-based and design-based methods were
both investigated. Survey design options included stratification and plot selection strategies; estimation options
included ratio estimation and regression modelling. Results were compared in terms of the relative bias and root
mean squared error of the estimates.

Results: The study suggests that relative efficiencies of two-fold or better, are possible with either model-based
or model-assisted estimators compared to traditional inventory surveys which use grid samples and simple
design-based estimators. This would enable a halving in the required sample size for the same precision for field
inventories in these plantations.

Conclusion: The use of LiDAR data as an aid to survey design produces marked efficiency gains compared to
traditional inventory methods.
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Background
Plantation managers are concerned with the establish-
ment, health, inventory and growth trajectory of commer-
cial forests. Greater precision in describing plantations
should lead to more accurate forecasts and therefore bet-
ter commercial decisions. As the gathering of information
requires expenditure, these benefits must be balanced with
the costs in order to determine the optimal amount of in-
formation that should be collected for making a decision
(Gilabert and McDill 2010). Therefore, there is a strong
motivation to improve sampling design efficiencies in field
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inventory, with the aim of minimising the number of
labour intensively measured plots while maximising pre-
dictive performance and minimising bias (Junttila et al.
2008).
The increasing availability of high-resolution remotely

sensed information, including Light Detection and Ran-
ging (LiDAR) (also referred to as airborne laser scanning
(ALS)) sensors, is now routinely being coupled with geo-
referenced inventory plot measurements to improve
large- and small-scale estimation of forestry parameters
(e.g. White et al. 2013). Several studies have now dem-
onstrated the utility of LiDAR data in the survey design
phase for optimal sample selection (e.g. Gobakken et al.
2013; Maltamo et al. 2009a) as well as in the estimation
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phase (e.g. McRoberts et al. 2012) to improve prediction
accuracies and/or cost efficiencies. The benefits can be
an outcome of differing efficiencies arising from either
the sampling design and/or the estimation method. In
both cases, efficiencies are gained when there is a strong
relationship between the forest variable of interest and
the derived LiDAR metrics (Maltamo et al. 2011). If this
relationship is strong and the postulated model is able to
capitalise on this relationship, then substantial gains in
efficiency can be realised (Junttila et al. 2013). Junttila
et al. (2013) also claimed that the most important factor
improving sampling design efficiency occurred when the
selected plots were well spread in feature space. This is
supported by Grafström and Ringvall (2013) who re-
ported, when examining several sampling designs, that
well-spread samples not only improved model fitting but
also design-based estimation.
Sampling strategies have been investigated across nu-

merous forest-related activities through a range of
modelling approaches within both design-based (prob-
ability) and model-based inference frameworks (e.g.
Hansen et al. 1983: McRoberts 2010; Wulder et al.
2012 and references therein). Traditionally, forest in-
ventories calculate estimates of growing stock volume
using design-based simple random sampling, stratified
or model-assisted estimators (McRoberts 2006). More
recently, several design-based and model-based vari-
ance estimators have been investigated using data from
LiDAR-assisted forest surveys (e.g. Gregoire et al. 2011;
McRoberts et al. 2013; Ståhl et al. 2011). Efficient sam-
pling strategies are attained by applying an optimal
sampling design in addition to identifying the best vari-
ance estimators for that particular design as well as for
the specified model.
In the design-based framework, the population is

regarded as fixed whereas the sample is regarded as a
realisation of a stochastic process (Gregoire 1998).
Model-assisted estimators are a subclass of design-
based estimators in which a model is used to describe
the population (e.g. Gregoire et al. 2011; McRoberts
2010). Relative to stratified sampling using the same
auxiliary data, model-assisted estimators can poten-
tially make better use of each variable by using the
complete range of values rather than dividing the vari-
able into classes. More recently, model-based infer-
ence in LiDAR survey sampling has gained popularity
(e.g. Ståhl et al. 2011). In model-based inference, the
sampling method does not necessarily have to be ran-
dom; that is, the sample plots can be treated as fixed,
the population variables treated as random, and variation
(and therefore inference) is derived from the model
(McRoberts 2010). Both model-assisted and model-based
approaches rely more heavily on models and auxiliary
variables to produce estimates than traditional design-
based approaches and therefore may produce more pre-
cise estimates for small areas (McRoberts et al. 2013). Also
model-based procedures allow prediction and error esti-
mation at the pixel level, and hence can result in attribute
mapping (McRoberts et al. 2013). However, their main dis-
advantage is the potential for substantial bias (if the model
is poorly specified) plus such models are often computa-
tionally intensive (McRoberts et al. 2013).
Within these statistical frameworks, the performance

of various sampling designs incorporating LiDAR vari-
ables has been examined through a range of modelling
techniques including k-Most Similar Neighbours (MSN)
(e.g. Maltamo et al. 2009b), Bayesian regression (Junttila
et al. 2008), nonlinear logistic regression (McRoberts
et al. 2013), linear regression techniques (Dalponte et al.
2011; Ene et al. 2013) and nonlinear regression model-
ling (Næsset et al. 2011). A common approach is to
compare the prediction accuracies of the estimation
techniques under investigation after reducing the num-
ber of sample plots (Dalponte et al. 2011; Junttila et al.
2013). McRoberts et al. (2012), on the other hand,
assessed the utility of LiDAR data as the basis for post-
stratification when applied to three techniques for esti-
mating mean growing stock volume: a multiple linear
regression model, a nonlinear logistic regression model,
and the k-Nearest Neighbour technique.
If appropriate LiDAR data are available prior to sam-

pling, then they can be used directly to stratify the field
survey (Gobakken et al. 2013; Hawbaker et al. 2009;
Maltamo et al. 2011; van Aardt et al. 2006). Hawbaker
et al. (2009), for example, improved sampling efficiency
and prediction accuracies of mean diameter, basal area,
stand height and biomass using gridded LiDAR data as a
priori information to define additional strata within a mixed
species coniferous forest in northeastern Wisconsin, USA.
For each forest type, potential sampling locations were
stratified into 10 x 3 strata according to mean LiDAR
height (10 levels) and standard deviation (3 levels) of mean
LiDAR height. This ensured that the entire data range of
the predictor variables was sampled on the ground and re-
sulted in better predictions by the LiDAR-derived regres-
sion models. If, however, the LiDAR data are acquired after
the fieldwork, an increase in precision may still be achieved
through incorporation of LiDAR-derived post-stratification
within the estimation process (Dalponte et al. 2011; Ene
et al. 2013; McRoberts et al. 2012). Note that stratification
for the estimation of a single population attribute is gener-
ally advantageous but the situation is less clear for a multi-
purpose inventory with many attributes of interest (Köhl
et al. 2006; Næsset et al. 2013). After stratification, there
exist several strategies for plot allocation that provide the
optimal sample size for each stratum. For example,
Neyman allocation is a method used to allocate samples
based on the stratum variances and population sizes,
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assuming similar sampling costs in the strata, and given
a fixed total sample size (Cochran 1977).
Recently, several studies have investigated a number of

theoretical alternatives to stratification for LiDAR-
assisted sample plot selection strategies (e.g. Grafström
and Ringvall 2013; Grafström et al. 2014). Grafström
et al. (2014), for example, introduced the local pivotal
method, to select well-spread probability samples, in
multidimensional spaces, from larger populations.
The scheduling of LiDAR campaigns is defined by the

characteristics of the plantation and planning objectives,
and schedules need to be adjusted annually. Efficiency
gains from using LiDAR are dependent on strong corre-
lations between the LiDAR variables and the variables to
be estimated, and hence they benefit from minimum
time delay between the acquisition of LiDAR data and
the collection of field data. A number of researchers
have investigated the effects of integrating historical and
recently collected data. Rombouts et al. (2010) examined
data from several campaigns separated by up to seven
years and found that campaign was statistically signifi-
cant in models relating stand volume to LiDAR data.
However, they also concluded that the integration of
prior data with current data produces gains in efficiency
especially when the number of recent plots is limited.
Junttila et al. (2010) employed earlier data to improve
estimates using Bayesian regression. They also provided
a method for correcting for time differences using linear
correction mapping and stated that small changes in
canopy height and forest structure and small changes in
scanning conditions can be accommodated by their
procedure.
There are two generic approaches to attribute estima-

tion using LiDAR data. Firstly, “area-based” methods
where the area-based prediction of forest variables is
based on the statistical dependency between variables
measured in field plots and the predictor features de-
rived from LiDAR data (e.g. Corona and Fattorini 2008;
White et al. 2013). Currently the area-based approach is
operationally applied in several countries when carrying
out standwise forest inventories (e.g. Hyyppä et al. 2012;
White et al. 2013). Secondly, “tree-based” methods
where individual trees are detected and tree-level vari-
ables are measured or predicted from the LiDAR data
(e.g. Hyyppä et al. 2012). In this study, area-based
methods were used where LiDAR data was summarised
into virtual plots and which were co-located with inven-
tory plots which were measured on the ground. It is
generally acknowledged that if individual tree crowns
can be recognised accurately in the LiDAR data then this
approach tends to outperform the area-based methods
(Yu et al. 2010). However, the area-based approach en-
ables one to retrieve canopy height information by
means of relatively coarse pulse density LiDAR data
(~2 points m−2) and hence cheaper acquisition costs
(Jakubowski et al. 2013).
In the area-based approach, statistical metrics and

other nonphysical distribution-related features of LiDAR
height measurements can be extracted either directly
from normalised LiDAR point clouds or from a normal-
ised rasterised representation of laser hits (e.g. the nor-
malised Digital Surface Model or Canopy Height Model
(CHM) (Hyyppä et al. 2008; White et al., 2013). By using
the CHM to derive metrics, the authors acknowledge
the under-utilisation of the information content of the
LiDAR point cloud. However this approach has proven
to be operationally robust and requires less computational
input (Hyyppä et al. 2008). Both area-based distributional
metrics and individual tree level metrics have been
extracted from CHMs in an operational workflow designed
for automatic inventory estimates of Pinus radiata
D. Don from LiDAR data, and this operationally orientated
approach (Chen and Zhu 2013) was followed here.
In this study several survey design components were

varied and compared using auxiliary variables derived
from LiDAR data to improve efficiencies in the inven-
tory of Pinus radiata plantations. Design-based and
model-based methods were both investigated. Survey de-
sign options included stratification and plot selection
strategies, and estimation options included ratio estima-
tion and regression modelling. The methodology in-
volved using simulations based on linear mixed-effects
modelling of four plot based surveys. The variable of
interest in the simulations was total stand volume (TSV)
per plot. Specifically, the objective of this study was to
determine whether it is possible to guide the choice of
ground truth samples, using a priori knowledge, so as to
reduce the number of field plots for P. radiata inventor-
ies, without compromising prediction accuracies.

Methods
Study site
Two sites were selected for this study. The first of these
was the Nundle State Forest P. radiata plantation, ap-
proximately 7000 ha in size and located in the Northern
Tablelands of New South Wales (NSW), Australia. The
second site was the Green Hills State Forest, which com-
prises 5000 ha of P. radiata, and is located in the Southern
Tablelands of NSW. Both plantations are managed by the
Forestry Corporation of New South Wales (FCNSW). In
the Nundle study area, two unthinned compartments
were selected representing young and old age classes re-
spectively. The young compartment was planted in 2002
(2002 age class (AC)) at a stand density of 1000 trees ha−1,
while the older compartment was planted in 1977
(1977 AC) at a stand density of 1200 trees ha−1 (Table 1).
The Green Hills study site contained a full representation
of age classes (from just planted to > 35 years old) and a



Table 1 Comparison of stand attributes

Survey Stand density
(stems ha−1)

Stand volume
(m3 ha−1)

DBH (cm) Basal area
(m2 ha−1)

Mean dominant
height (m)

Mean height (m)

Nundle 1977 279 ± 123 500 ± 151 45.6 ± 7.5 45.2 ± 13.7 35.2 ± 2.5 33.3 ± 1.0

(48–676) (205–855) (34.7 - 74.1) (18.6 - 78.0) (27.8 - 39.4) (31.1 - 35.9)

Nundle 2002 593 ± 289 57 ± 25 16.8 ± 3.0 13.5 ± 5.8 11.0 ± 1.0 9.8 ± 0.5

(100–1250) (11–135) (11.6 - 24.5) (2.7 - 31.7) (8.8 - 12.9) (8.9 - 10.9)

Green Hills Inventory (1979) 197 ± 34 249 ± 44 40.0 ± 2.1 24.6 ± 3.7 30.3 ± 2.0 28.0 ± 2.2

(140–260) (161–342) (35.3 - 43.6) (17.6 - 32.8) (25.6 - 34.1) (23.5 - 31.4)

Green Hills Research (30 + yrs) 274 ± 40 413 ± 46 42.1 ± 1.3 38.8 ± 4.7 33.4 ± 1.2 31.3 ± 1.1

(187–305) (322–463) (40.3 - 43.9) (29.5 - 43.6) (31.2 - 35.0) (30.0 - 33.6)

mean ± sd (min - max).
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range of associated silvicultural thinning treatments (de-
scribed in Stone et al., 2011).

Data collection
Airborne scanning LiDAR data
Discrete return airborne LiDAR data were acquired over
the Nundle State Forest P. radiata plantation (Nundle) in
June 2011 using a Trimble Harrier 68i system mounted on
a Cessna U206G airplane. The technical specifications of
the LiDAR data acquisition are provided in Table 2. The
LiDAR points were processed, geo-referenced and classi-
fied by the service provider into ground and non-ground
categories using their proprietary method and MARS soft-
ware (Merrick & Company, Colorado, USA).
The discrete return LiDAR data were acquired over

the Green Hills State Forest (SF) P. radiata plantation
(Green Hills) in July 2008 using a Lite Mapper LMS-
Q5600 ALS system (Riegl, Austria) using a mean swath
width of 500 m (other technical specifications are listed
Table 2 LiDAR acquisition specifications

LiDAR acquisition specification Nundle S.F.
study area

Green Hills S.F.
study area

Swath width (m) 925 500

Scan overlap (%) 40

Sensor system Trimble Harrier Lite Mapper

68i-LMS-Q5600
(Riegal)

LMS-Q5600
(Riegal)

Measurement rate (KHz) 81 88

Field of view (sum of the two
angles off nadir, degrees)

30 30

Flying height (metres above
ground level)

1155 1100

Point density (points m−2) 3.6 2.0

Vertical/horizontal accuracy
(σ in metres)

0.25 / 0.5 0.25 / 0.5

Average footprint size (m) 0.5 0.6

Beam divergence (milliradians) 0.5 0.5

σ = standard deviation.
in Table 2). The points in this dataset were also classified
by the provider into ground and non-ground categories
using their proprietary method and TerraScan software
(TerraSolid Ltd., Helsinki, Finland).
For both the Nundle and Green Hills study areas, a

1 m spatial resolution Digital Elevation Model (DEM)
was constructed from the ground point data using a
standard linear triangulation surface modelling tech-
nique in Environment for Visualizing Images (ENVI 4.7)
software (Research Systems Inc., USA). A similar tri-
angulation approach was used to generate a Digital Sur-
face Model (DSM) from all first returns (selecting the
highest point in each grid cell). Then a 1 m pixel reso-
lution CHM surface was constructed by subtracting the
DEM from the DSM which represents the height of the
canopy above ground level (ENVI 4.7).
For the Nundle stands, the CHM raster was initially

masked to minimise potential edge effects by applying
an internal 18 m buffer to the compartment boundary
layer. In the older stand (1977 AC), circular 0.1 ha plots
(17.84 m radius) were located at the intersection points
of a 35 m grid to generate 1496 contiguous, virtual plots.
The grid pattern ensured that the circular plots did not
overlap and the plot dimensions were chosen so that
each virtual plot would contain 19 trees on average,
based on the LiDAR estimated stand density. In the
younger stand (2002 AC), circular 0.04 ha plots (11.28 m
radius) were located at the intersection points of a 23 m
grid to generate 572 plots and each of these virtual plots
was expected to contain 19 trees on average. When the
stand densities were later measured on the ground they
were somewhat higher than the LiDAR estimates so that
the number of trees per virtual plot was actually 28 and
24 respectively for the 1977 and 2002 AC stands. LiDAR
metrics were extracted for each virtual plot based on the
1 m CHM pixels contained within the plot (pixels on
the circumference were included if they mostly lay inside
the plot). The LiDAR metrics extracted are described in
Table 3 and included mean height, mean above mean
height, mean dominant height, estimated stand density



Table 3 Description of LiDAR metrics

LiDAR metric Definition

Mean height Mean height of pixels in virtual plot

Mean above mean height Mean height of pixels which are above the
mean height

Mean dominant height Mean height of pixels identified as maxima
using a 5 × 5 m window

Stocking density Estimated stems per ha based on a 3 × 3 m
local maxima (the window size most closely
related to stand density)

Canopy cover Percentage of pixels above 3 m in height

Occupied volume Sum of all pixel heights in virtual plot

Variance Variance of pixels in virtual plot

Skewness Skewness of pixels in virtual plot
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per hectare percentage canopy cover (CC), occupied vol-
ume ( OV), height variance and height skewness (Turner
et al. 2011).
At the second study site, also using the 1 m CHM, the

Green Hills plot centre coordinates were imported into
ENVI 4.2 software and buffered to a distance of 35 m.
These vectors were then used as sampling templates to ex-
tract the same suite of LiDAR metrics as for the Nundle
study.

Ground survey design
At the time of measurement, both of the Nundle stands
were relatively heterogeneous in terms of stand density
and tree spacing due to the absence of any pre-harvest
thinning, as well as historic exposure to browsing and
drought which affected tree establishment and survival.
This heterogeneity was expected to make accurate esti-
mates difficult to achieve using ground-based assessment
based on a traditional systematic survey design. Because
of this, stratification of the two Nundle stands was
achieved using the LiDAR data as a priori information
(e.g. Hawbaker et al. 2009; Maltamo et al. 2011), specif-
ically mean height per virtual plot and estimated stand
density. Both variables were divided into three ranges
using the Dalenius-Hodges approach (Cochran 1977).
This method resulted in nine non-contiguous strata, and
each virtual plot was assigned to one of these strata. A
random sample of 90 plots was then selected with an
equal number of plots per stratum (10) using simple
Table 4 Comparison of survey data

Survey Stratification Number of strata Number of plo

Nundle 1977 LiDAR 9 1496

Nundle 2002 LiDAR 9 572

Green Hills inventory Management 4 -

Green Hills research Management 16 -

CV = coefficient of variation.
random sampling without replacement in each stratum.
Subsequently, a subset of six plots per stratum was ran-
domly selected for ground-based measurement (Table 4).
The sample size was chosen so that the relative standard
error of stand volume was 5% or better, using the design-
based expansion estimator [3] which is given below.
At the Green Hills site, plot-based tree data from two sur-

veys undertaken at approximately the same time were used
for the analysis. One of the surveys comprised 100 conven-
tional inventory plots with four strata (operational Planning
Units), defined according to age class and thinning status
(specifically the four strata were 1998 AC and unthinned;
1979 AC and thinned twice; 1983 AC and thinned twice;
and 1983 AC and unthinned) (Table 4). These plots were
established in accordance with standard FCNSW inventory
procedures; they are based on a sampling intensity of one
plot per four hectares, employ a systematic grid design with
a random starting point and are designed to achieve a prob-
able limit of error (PLE, as defined below) of 10% in terms
of predicted stand volume, using the design-based expan-
sion estimator [3] which is given below. Within the same
study area, a further 63 plots were measured as part of a re-
search study (Stone et al. 2011) with a sampling design
comprising 16 strata defined according to age class, thin-
ning history and ground slope categories. Four circular
plots were randomly assigned to each stratum (one stratum
had only three plots), bringing the total to 63 research plots.
This sample size enabled models of tree height vs LiDAR
height to be estimated with a relative root mean squared
error (RMSE) of 5%.

Field data
In the Nundle 1977 AC stand, all of the 54 plots were used
(ranging from 12.62 m to 19.95 m in radius), providing a
cluster of selected trees containing approximately 22 trees
per plot on average. In the Nundle 2002 AC stand, 52 of
the plots were used (ranging from 7.98 m to 17.84 m in ra-
dius), providing a cluster of selected trees containing ap-
proximately 23 trees per plot on average (two plots were
inaccessible). The use of “flexible radius” plots that is vary-
ing the plot radius according to the estimated stocking
density, was employed to maintain an approximately con-
stant workload throughout the survey (Melville et al.
2015). However the plots themselves were chosen with
equal probability within strata. In the field, plot centres
ts Sample size R2 values for model [1] CV of timber volume (%)

54 0.69 31

52 0.57 44

100 0.88 61

63 0.93 71
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were located using two GPS units (Garmin Ltd.), and then
validated through crown interpretation of open spaces be-
tween trees using printed copies of the LiDAR imagery.
Every tree in each selected cluster was labelled and diam-
eter at breast height over bark (DBH at 1.3 m) measured.
At least five trees per selected cluster, representing the tal-
lest trees, were selected and their heights measured using
a hypsometer (Vertex III, Haglof, Sweden). These trees
were used to predict the heights of the non-measured
trees using the nonlinear dominant height vs DBH rela-
tionships which are used by FCNSW for this species. Plot
standing volume was then estimated using the tapering
equations employed by FCNSW for these plantations.
In the Green Hills inventory survey, plot measure-

ments and tree assessments were undertaken by an inde-
pendent local inventory crew using ATLAS Cruiser
methodology (Atlas Technology, Rotorua, NZ) which
provided a cluster of selected trees containing approxi-
mately 18 trees per plot on average. The inventory plot
centres were located using a Scout Pak GPS (Juniper
Systems, Logan, Utah, USA) with post-processing differ-
ential correction. In the Green Hills research survey the
63 plots were assessed using flexible radius plots, as de-
scribed above, with radii ranging from 7.98 m to
17.84 m. This provided a cluster of selected trees con-
taining approximately 15 trees per plot on average. The
research plot centres were located using differential
Global Positioning System (Trimble Navigation Ltd.,
Sunnyvale, California, USA) and a precision survey (with
a laser theodolite). These plots were then measured
using the same methodology as the Nundle plots.

Simulation approach
Overview
The approach used in the study was to construct simula-
tion models using actual data, which comprised the data ac-
quired using LiDAR together with the data collected from
the ground-based surveys. The simulation models were
then used to generate artificial plantations which were sam-
pled using a range of different strategies. These strategies
were then compared in terms of the precision of the result-
ing estimates. A flowchart illustrating the approach is pro-
vided in Figure 1. Using the Nundle 1977 AC as an
example, the procedural steps were as follows:-

1. Sample 54 plots from a compartment containing
1496 plots. This sample was stratified using LiDAR
height and stocking density (nine strata).

2. Conduct ground measurements of the sampled
plots.

3. Estimate the parameters in simulation models (1)
and (2).

4. Use models (1) and (2) to simulate data for 2700
plots in nine strata (300 plots per strata – same
stratification as step 1), including stand volume, OV
and CC.

5. Since the strata used to simulate the plot population
is deemed to be “unknown” for the simulated
sampling, the simulated population is re-stratified
using the auxiliary variables OV and CC.

6. Select 24 plots using one of the sampling strategies
under consideration.

7. Estimate the total volume of the simulated
population and compare the estimate to the
simulated “actual” value.

8. Repeat steps 4 to 7 a total of 10,000 times.
9. Calculate the relative bias and RMSE using the

estimates and actual values.

Statistical modelling and plot simulation
The four datasets were examined separately by fitting
linear mixed models to the variables of interest, namely
timber volume and the LiDAR variables OV and CC
(Turner et al. 2011). Although several LiDAR variables
were available, the variables OV and CC were chosen be-
cause they were the best predictors of stand volume. It
was also considered important to have separate variance
terms for the strata which were defined in the original
surveys; this is because each of the key variables changes
markedly from one stratum to another, both in terms of
the mean value and the variance. The use of mixed
models allows for the estimation of separate stratum var-
iances thus providing a more complete description of
the data (Gilmour et al. 1995). The parameter estimates
from the mixed models can then be used to generate
plot data with characteristics very similar to the original
data they were based on.
For each of the four plantation surveys, the following

model was used for timber volume at the plot level

Y ¼ ZTβþ ε ð1Þ

where Y represents total volume, Z is a design matrix
consisting of stratum and OV and ε ~N(0, R). The term
R = diag(V1, … VH) represents the error structure, which
is assumed to be a diagonal matrix with separate stratum
variances, represented by Vh where h indexes strata and
H is the total number of strata. In this model Vh may
also be written as σ2h Imh where σ2h and mh represent the
plot variance and number of plots respectively for
stratum h and Imh is the identity matrix of order mh. A
preliminary model which included off-diagonal correl-
ation terms was subsequently replaced by the diagonal
variance model because the correlation terms were very
small.
A secondary linear mixed model was used to simultan-

eously model the LiDAR variables OV and CC at the
plot level. This model has the same form as equation [1]



Actual forest
compartment

Sample of plots for
ground measurement

Estimate parameters
in models (1) and (2)

Simulate population
of plots, including
volume, OV and CC

Stratify simulated
population and
select plot sample

Estimate timber
volume in simulated
population

Compare volume
estimates with
simulated population
values

1496 plots

54 plots

2700 plots

24 plots

Repeat
10,000 times

Calculate relative bias
and RMSE values

Figure 1 Flowchart illustrating simulation approach for the Nundle 1977 AC stand.
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where Y is multivariate matrix with column vectors for
OV and CC, Z is a design matrix consisting of stratum
and the multivariate mean vector (with intercept terms
for OC and CC) and R = diag(V1, … VH) represents the
error structure, which is assumed to be a block diagonal
matrix with variance matrices,Vh, given by

Vh ¼ σ2h1 σh12

σh12 σ2h2

� �
ð2Þ
In this model σ2h1 and σ2h2 are the within stratum var-
iances of OV and CC respectively and σh12 is the within
stratum covariance term. As with the model for timber
volume, preliminary analysis revealed that the off-diagonal
correlation terms are sufficiently small to ignore.
For each of the four forestry surveys, a “population” of

2700 plots (each plot equal to 0.05 ha) was simulated
using the parameter estimates from model [1]. The ac-
tual model parameters and stratum variances were esti-
mated separately for each survey. Values for OV and CC
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were also simulated using the multivariate model for use
as stratification variables. The R2 values associated with
model [1] are shown in Table 4 as well as the coefficients
of variation (CV) for plot volume.
In the Nundle surveys, a measure of OV based on a

fixed circular plot was used and timber volume was
expressed in terms of cubic metres per hectare. In the
two Green Hills surveys, a measure of OV related to the
actual size of the measured plots was used and timber
volume was expressed in terms of volume (m3) per plot.
In both cases, the 1 m pixel resolution enables calcula-
tion of the LiDAR variables for an approximately circular
plot and both methods produce satisfactory correlations
between OV and timber volume. Hence the decision to
use either metrics calculated according to a fixed radius,
or metrics calculated according to the actual measured
radius was based on the available data. The LiDAR vari-
ables used for stratification in the Nundle surveys were
mean canopy height and stand density. The management
variables used for stratification in the Green Hills sur-
veys were age class and thinning (operational inventory
survey) and age class, thinning and slope (research sur-
vey). With the Green Hills stands, after simulating data
for all strata, the oldest of these were used in comparing
the various sampling strategies. In the Green Hills inven-
tory plots these were the 1979 AC stands while in the
Green Hills research plots they were the 30+ year AC
compartments. The oldest plots were deemed to be most
relevant to this study as they were the plots which were
closest to harvest.

Simulated survey methods
Inferential framework After simulating the population
of plots, both design-based and model-based strategies
were investigated for survey design and estimation. Since
stratification and Neyman allocation are typically used
with design-based estimators, including model-assisted
estimators (Foreman 1991), a number of different strati-
fication options and two different types of estimation
were explored. Stratification options included the use of
different numbers of strata (two, three, four and six) and
the use of one or two stratification variables (OV and OV+
CC). Types of estimation included expansion and regres-
sion estimators, as described below. For the model-based
strategies balanced sampling was used to obtain a represen-
tative sample of plots. Balanced sampling ensures that the
Horvitz-Thompson estimators of the population totals of
the design variables (OV and CC) equal the known totals of
these variables and the method may be used without strati-
fication. Since balanced samples are not strictly random
they were not employed with the design-based estimators.
They were used with the model-based methods because
they were expected to be more efficient than a random
sample. In these simulations the R-package “samplecube”
was used which employs an algorithm developed by Deville
(2004) for sample balance. Note that the selection probabil-
ities themselves are not used in the model-based estimate
even though the balanced sample is defined with respect to
the Horvitz-Thompson estimator.

Stratification and plot selection A simple random
sample of plots was chosen from the population of avail-
able plots to simulate sampling without stratification. To
simulate stratified sampling, the primary variable OV
was chosen as it is best correlated with stand volume
(Turner et al. 2011). Where stratification was based on
two variables, the secondary variable CC was chosen as
it is also closely related to stand volume and the two var-
iables together form the best prediction pair for stand
volume. With a single stratification variable, the number
of strata employed was two, three, four or six. With two
stratification variables, the number strata employed was
either four (2 × 2) or six (3 × 2). Stratum boundaries
were calculated using the Dalenius-Hodges method
(Cochran 1977). Neyman allocation was used to allocate
plots to strata. Using this scheme plots are allocated ac-
cording to nh ~Nh Sh, where h indexes strata, nh repre-
sents stratum sample size and Nh and Sh represent
stratum population size and standard deviation of timber
volume respectively (Cochran 1977). We assumed that
the standard deviation of timber volume, Sh, would be
unknown for the purposes of survey design and used the
standard deviation of the primary stratification variable
instead. A minimum sample size constraint was also
specified (two plots per stratum).
For the model-based methods, the sampling was based

on either one or two balancing variables and stratifica-
tion was not employed as a sampling tool. The design
variable(s) used for plot selection was either OV (single
balancing variable) or both OV and CC (two balancing
variables). The target sample size was 24 plots through-
out the study which is similar to the number of plots
used by FCNSW for this sized population. Minor vari-
ation sometimes occurred due to minimum sample size
constraints and the actual sample size was occasionally
23 or 25. RMSEs were adjusted where necessary to re-
flect the comparison size of 24 plots.

Estimation methods
Design-based estimates Where Y represents the total
volume of timber in the stand of interest, then the basic
design-based expansion estimator is given as

Ŷ ¼ M
m

X
i∈q

Y i; ð3Þ

where Yi is the volume of timber in plot i, q represents
the set of sampled plots, and M and m represent the



Table 5 Parameter estimates for model [1]

Parameter Nundle 1977 Nundle 2002 Green Hills
(30+ yrs)

Green Hills
(1979)

Mean 54.7236 −0.4823 1.1713** 7.8131**

OV 0.0229*** 0.0170*** 0.0014*** 0.0014***

Stratum 2 −12.8711 −4.1180 2.5097*** −2.5224

Stratum 3 47.3760 −6.3374 2.0857 −7.3314

Stratum 4 −56.9808 −1.7643 7.2840*** −2.7101

Stratum 5 43.0417 2.2229 −1.1264

Stratum 6 10.3448 −24.734 2.1840**

Stratum 7 −31.9621 6.2664

Stratum 8 93.5574 −10.8385

Stratum 9 113.1250** −9.4114

**p < 0.01 ***p < 0.001.
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total number of plots and the number of sampled plots
respectively (Cochran 1977).
The stratified sampling method employed a stratified

design-based expansion estimator which is given by
(Cochran 1977)

Ŷ ¼
XH
h¼1

Mh

mh

X
i∈qh

Y i; ð4Þ

where H represents the total number of strata, and Mh

and mh represent the total number of plots and the
number of sampled plots in stratum h respectively.
In addition to the usual design-based estimator, a re-

gression estimator (model-assisted) was also employed
using strata and OV as the auxiliary variables. This esti-
mator may be written as (Särndal et al. 1992)

Ŷ ¼
XH
h¼1

X
i∈qh

Mh

mh
Y i−β̂T Ẑ−Z

� �
; ð5Þ

where Z represents the design matrix for the model co-
variates, Ẑ is a design-based expansion estimator for Z
and β is a vector of model parameters who's design-

based least squares estimate is given by β̂.

Model-based estimates The model-based predictions
used either OV (single balancing variable) or OV and
CC (two balancing variables) as auxiliary data. The
model-based estimator for timber volume may be writ-
ten as (Valliant et al. 2000)

Ŷ ¼
X
i∈q

Y i þ
X
j∉q

β̂Tzj; ð6Þ

where zj represents the covariate vector for plot j and β̂
is an appropriate model-based estimate for β.

Comparisons between methods The various sampling
methods were compared in terms of the relative bias,
and the relative root mean squared error (RMSE%). The
relative bias is defined as

RB ¼

X
k

Ŷ k−Yk
� �
X
k

Y k

; ð7Þ

where k indexes the set of realisations of the simulated
plantations, Ŷk is the estimate of total timber volume for
the k'th realisation and Yk is the actual total timber
volume.
The relative root mean squared error is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k

X
k

Ŷ k−Yk
� �2s

1
k

X
k

Y k

: ð8Þ

The sampling strategies were also compared in terms
of their relative efficiency with respect to the simple ran-
dom sample. The relative efficiency for any method is
calculated by squaring the ratio obtained by dividing the
RMSE value for that method by the RMSE value for the
design-based unstratified estimate (3). The PLE (prob-
able limits of error; Goulding and Lawrence 1992) was
also calculated, where the PLE is half of the 95% confi-
dence interval expressed as a percentage of the mean
and was calculated in this study as twice the RMSE

PLE ¼ 2 � RMSE: ð9Þ

Results
The parameter estimates for model [1] are given in
Table 5. The comparisons of survey methods for each of
the four surveys are presented in Tables 6, 7, 8, 9. The
different sampling strategies in terms of RMSE and bias
were compared and the relative bias was found to be
very small for all methods. In terms RMSE, all strategies
outperformed the simple random sample. In the simula-
tions based on these plantation stands, the performance
of simple random sampling is similar to that of a grid
sample, which is commonly used in inventory sampling.
It could be argued that a grid sample should be more ef-
ficient than a simple random sample because it reduces
the effect of the spatial variability in the plots. However,
when the Nundle data were pre-stratified according to
the LiDAR derived variables related to plot mean height
and stand density, it was noticeable that the plots within



Table 6 Nundle 1977 AC plots: comparison of methods

Inferential
framework

Number
of strata

Design
variable

Estimation
variables

Regression
model

Relative
bias

RMSE PLE Relative
efficiency

Design- - - Expansion - 0.02 6.5 13.0 1.0

based 2 OV Expansion - −0.02 5.3 10.6 1.5

3 OV Expansion - 0.04 4.0 8.0 2.0

4 OV Expansion - 0.01 4.4 8.8 2.2

6 OV Expansion - 0.00 3.8 7.6 2.4

2 OV Regression Strata + OV 0.06 4.4 8.8 2.2

3 OV Regression Strata + OV 0.11 4.0 8.0 2.6

4 OV Regression Strata + OV 0.04 4.0 8.0 2.6

6 OV Regression Strata + OV 0.04 4.1 8.2 2.5

4 OV + CC Expansion - 0.02 4.9 9.8 1.8

6 OV + CC Expansion - 0.05 4.6 9.2 2.0

4 OV + CC Regression Strata + OV −0.14 4.4 8.8 2.2

6 OV + CC Regression Strata + OV −0.05 5.0 10.0 1.7

Model- - OV Model OV −0.08 4.1 8.2 2.5

based - OV + CC Model OV + CC −0.12 4.2 8.4 2.4

OV = the LiDAR metric 'occupied volume'; i.e. the sum of all pixel heights per plot.
CC = the LiDAR metric 'canopy cover'; i.e. the % of pixels above 3 m in height.
Expansion = estimator [4]; regression = estimator [5]; model = predictor [6].
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the same stratum were not spatially contiguous which
suggests that grid sampling and simple random sampling
are likely to perform similarly in these plantations.
With the usual design-based expansion estimator, the

number of strata is important. For example, better re-
sults were achieved using six rather than two strata in
Table 7 Nundle 2002 AC plots: comparison of methods

Inferential
framework

Number
of strata

Design
variable

Estimation
variables

R
m

Design- - - Expansion -

based 2 OV Expansion -

3 OV Expansion -

4 OV Expansion -

6 OV Expansion -

2 OV Regression St

3 OV Regression St

4 OV Regression St

6 OV Regression St

4 OV + CC Expansion -

6 OV + CC Expansion -

4 OV + CC Regression St

6 OV + CC Regression St

Model- - OV Model O

based - OV + CC Model O

OV = the LiDAR metric 'occupied volume'; i.e. the sum of all pixel heights per plot.
CC = the LiDAR metric 'canopy cover'; i.e. the % of pixels above 3 m in height.
Expansion = estimator [4]; regression = estimator [5]; model = predictor [6].
the Nundle and Green Hill research stands (Tables 6, 7
and 9). In addition to this, the number of stratification
variables is also important with one single, LiDAR-
derived variable (OV) leading to better estimates than
two separate variables (OV + CC) for three of the four
datasets and nearly equivalent estimates for the fourth.
egression
odel

Relative
bias

RMSE PLE Relative
efficiency

0.04 9.1 18.2 1.0

−0.05 7.8 15.6 1.4

−0.10 8.0 16.0 1.7

0.05 6.6 13.2 1.9

0.01 6.5 13.0 2.0

rata + OV −0.04 6.4 12.8 2.0

rata + OV 0.08 6.3 12.6 2.1

rata + OV 0.02 6.3 12.6 2.1

rata + OV −0.07 6.4 12.8 2.0

−0.02 7.5 15.0 1.5

−0.04 7.4 14.8 1.5

rata + OV −0.08 6.3 12.6 2.1

rata + OV −0.10 6.6 13.2 1.9

V −0.12 6.3 12.6 2.1

V + CC −0.14 6.5 13.0 2.0



Table 8 Green Hills inventory plots (1979 AC): comparison of methods

Inferential
framework

Number
of strata

Design
variable

Estimation
variables

Regression
model

Relative
bias

RMSE PLE Relative
efficiency

Design- - - Expansion - 0.04 4.4 8.8 1.0

based 2 OV Expansion - 0.06 3.8 7.6 1.3

3 OV Expansion - 0.02 3.9 7.8 1.3

4 OV Expansion - 0.01 4.0 8.0 1.2

6 OV Expansion - 0.10 4.1 8.2 1.2

2 OV Regression Strata + OV 0.05 3.5 7.0 1.6

3 OV Regression Strata + OV 0.03 3.8 7.6 1.3

4 OV Regression Strata + OV −0.01 3.9 7.8 1.3

6 OV Regression Strata + OV 0.10 4.1 8.2 1.2

4 OV + CC Expansion - 0.02 3.8 7.6 1.3

6 OV + CC Expansion - −0.01 4.1 8.2 1.2

4 OV + CC Regression Strata + OV 0.03 3.5 7.0 1.6

6 OV + CC Regression Strata + OV −0.01 4.0 8.0 1.2

Model- - OV Model OV −0.01 3.5 7.0 1.6

based - OV + CC Model OV + CC −0.01 3.5 7.0 1.6

OV = the LiDAR metric 'occupied volume'; i.e. the sum of all pixel heights per plot.
CC = the LiDAR metric 'canopy cover'; i.e. the % of pixels above 3 m in height.
Expansion = estimator [4]; regression = estimator [5]; model = predictor [6].
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The relationship between stand volume and OV for
the four stands is shown in Figure 2. These relationships
form the basis of the model-assisted and model-based
methods. With the regression estimator (model-assisted)
fewer strata led to better estimates for the Green Hills
Table 9 Green Hills research plots (30+ yrs AC): comparison o

Inferential
framework

Number
of strata

Design
variable

Estimation
variables

R
m

Design- - - Expansion -

based 2 OV Expansion -

3 OV Expansion -

4 OV Expansion -

6 OV Expansion -

2 OV Regression St

3 OV Regression St

4 OV Regression St

6 OV Regression St

4 OV + CC Expansion -

6 OV + CC Expansion -

4 OV + CC Regression St

6 OV + CC Regression St

Model- - OV Model O

based - OV + CC Model O

OV = the LiDAR metric 'occupied volume'; i.e. the sum of all pixel heights per plot.
CC = the LiDAR metric 'canopy cover'; i.e. the % of pixels above 3 m in height.
Expansion = estimator [4]; regression = estimator [5]; model = predictor [6].
datasets (Tables 8 and 9) but had minimal effect on the
RMSE values for the Nundle datasets (Tables 6 and 7). A
possible reason is that the regression models were more
effective in the Green Hills stands, thus requiring fewer
strata to obtain the same level of efficiency. The
f methods

egression
odel

Relative
bias

RMSE PLE Relative
efficiency

0.01 6.9 13.8 1.0

0.00 4.9 9.8 2.0

0.02 4.4 8.8 2.4

−0.01 4.2 8.4 2.7

−0.05 4.1 8.2 3.0

rata + OV 0.00 3.3 6.6 4.4

rata + OV 0.02 3.5 7.0 3.9

rata + OV 0.00 3.6 7.2 3.7

rata + OV −0.07 3.8 7.6 3.3

−0.07 4.9 9.8 2.0

−0.04 4.4 8.8 2.4

rata + OV −0.02 3.3 6.6 4.4

rata + OV −0.02 3.5 7.0 3.9

V −0.01 3.6 7.2 4.4

V + CC −0.05 3.3 6.6 4.4
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Figure 2 Mean stand volume vs occupied volume (OV) for the four stands used in the study.
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preferred option with the Nundle stands was for a single
stratification variable rather than two variables but this
was not the case for the Green Hills stands.
With the model-based approach, the number of auxil-

iary variables (either one or two) had a minor impact on
the prediction errors. Care is needed in interpreting the
results for the Nundle stands because there was evidence
of multi-collinearity in the auxiliary variables and the
addition of a second variable to the model may lead to
only minor improvement if the two variables are corre-
lated. In the model-based approach the auxiliary vari-
able/s (i.e. the OV and/or CC) was used both in the
design phase, via balanced sampling, and in the regres-
sion model. Overall, there is not a substantial difference
between the model-based and model-assisted methods,
with the simulations slightly favouring the model-based
approach (Tables 6, 7, 8, 9). The main difference be-
tween these two strategies is the use of stratification in
the design-based approach (both for sample selection
and as a regression variable) compared to use of bal-
anced sampling in lieu of stratification with the model-
based approach.
The efficiencies gained through using a regression
model, either in a design-based or model-based frame-
work, are pronounced in most of the stands which were
studied. The best relative efficiency, of 4.4, was achieved
in the Green Hills research stands (Table 9). A relative
efficiency of 4.4 is equivalent to 4.4-fold reduction in
sample size for the same precision. With the Nundle
stands, the plots on which the simulations were based
already utilised LiDAR data though a pre-stratification
process (i.e. the initial Dalenius-Hodges stratification ap-
proach). With the Green Hills stands the initial stratifi-
cation was based on management-level rather than
LiDAR data and in both stands only one of these strata
(the oldest) was selected for simulation. Therefore, the
simulated plots display a broader range of auxiliary data
in the Nundle stands.
Only in the Green Hills inventory plots is it possible

to directly explore total recoverable volume (TRV),
which is defined as tree stems assessed for product yield,
and which was calculated by the inventory crew. How-
ever based on other (unpublished) work over several
FCNSW regions, the correlation between TSV and TRV
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is very high. Therefore, none of the above results were
expected to change substantially if TRV were considered
instead of TSV. Looking at the sampling schemes and
sample sizes currently being used it is obvious that the tar-
get of 10% PLE is not being met with most of these data
(Tables 6, 7 and 9). The exception is the Green Hills in-
ventory plots (Table 8) where, based on these simulations,
a sample of 24 plots would result in a PLE of 8.8%.

Discussion
Several studies in the northern hemisphere have demon-
strated the benefits of LiDAR data as a priori auxiliary
information for improving the efficiency of field plot de-
signs (e.g. Dalponte et al. 2011; Gobakken et al. 2013;
Grafström and Ringvall 2013; Graftröm et al. 2014;
Hawbaker et al. 2009; Junttila et al. 2013; Maltamo et al.
2011). There is now a consensus that LiDAR-assisted
plot selection should lead to cost savings in operational
inventories. More specifically, several recent studies have
also investigated the utility of LiDAR data to predict
stem volume in stands of planted P. radiata (Chen and
Zhu 2013; Gonzàlez-Ferreiro 2012; Stone et al. 2011;
Watt and Watt 2013; Watt et al. 2013). However, this
study is the first to systematically compare the potential
efficiencies gained through a series of LiDAR-assisted
sampling designs for this important plantation species.
Ultimately, the total number of plots will depend on the
variation within the area of interest and how compre-
hensively the sample describes this variation (Junttila
et al. 2008).
In this study, the relative efficiency achieved by the

model-based sampling strategy ranged from 1.6 in the
Green Hills inventory study area to 4.4 in the Green
Hills research study area. It is possible to calculate that
between 10 plots (Green Hills research study) and 38
plots (Nundle 2002 AC study) would have been required
to achieve the 10% PLE target which is used by FCNSW.
This compares with the 46 and 79 plots, respectively
that would have been required to meet the same target
using a grid-based sampling procedure. Even in the
Green Hills inventory study, where the relative efficiency
gains were least, the sample could have been reduced
from 19 plots to 12 plots while still meeting the 10%
PLE target.
For the purpose of this study, a distinction was drawn

between the variables used to generate the simulated
plot data and those used for the simulated survey de-
signs and estimation. The simulation parameters were
estimated from the observed data and the original strati-
fication was based on the LiDAR variables mean height
and estimated stocking. This original stratification was
included in the models used to estimate the simulation
parameters, with the covariance parameters estimated
separately within each stratum. The strata that were
used to generate the plot data were excluded from the
simulated survey design and estimation because the
underlying mechanisms which give rise to the plot data
are usually unknown to the observer. The primary aim
was to determine what efficiencies could be gained from
using LiDAR variables even when these are different to
those which were used to generate the data.
The plots in the simulated plantation stands were se-

lected in accordance with the sampling method under
consideration. The assumptions underlying the design-
based approaches were observed in the simulated sam-
ples; specifically the plots were selected independently
using known selection probabilities within strata. In the
model-assisted methods the plots were also randomly
selected and the known selection probabilities were
employed in the estimates. As for the model-based ap-
proach, the models used for prediction were not the
same as those used for simulating the plots. This is a
common situation in model-based sampling since the
underlying population model is usually unknown. Some
of the model assumptions, such as constant variance, are
not actually correct owing to the way that the data were
simulated. Again this is a very common situation in ac-
tual surveys since the underlying variance structure is
usually unknown. Model deficiencies can sometimes be
revealed via a detailed residuals analysis but this is not
always conclusive. What is important in these results is
that the model-based predictions are still equal to or
better than the design-based estimates in terms of the
RMSE despite the known model deficiencies (and the as-
sociated bias).
Both the auxiliary variables used in this study, OV and

CC, are easily derived from LiDAR data (Turner et al.
2011). The LiDAR variables chosen must capture the
variability of the stand parameter being surveyed, which
in turn is influenced by local topography, soils and silvi-
cultural history. These variables were chosen because
they were the best predictors of stand volume in the ini-
tial regression modelling of the data. Therefore they
were used as auxiliary data, either for stratification and/
or within the models, using the model-assisted or
model-based methods. Maltamo et al. (2011) used the
LiDAR metrics VEG (the proportion of ground echoes
vs canopy echoes using a threshold value of 2 m) and
H90 (plot level 90 percentile for height based on first
returns) as a basis for plot selection. Their VEG metric
is a measure of canopy penetration which, although dif-
ferent to OV, is somewhat similar to the CC used in this
study. Similarly, Gobakken et al. (2013) used the metric
h70f (related to canopy height) and d0f (related to canopy
density) to define their strata.
The simulations tend towards favouring the model-

based approach and there are other advantages to using
this approach such as the increased flexibility associated
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with model-based methods. For example, spatial predic-
tion, small domain (small area) estimation and variance
modelling are all model-based techniques which have no
obvious design-based counterparts. Nevertheless, to
limit bias it is essential that the model is well specified
(e.g. Hansen et al. 1983) and captures the spatial vari-
ation presented by the population of trees in a Planning
Unit. A common source of variation in P. radiata is
stand height and disparity in growth is related to local
topography (Saremi et al. 2014), especially in regions
that may experience periods of drought (e.g. Álvarez
et al. 2013). The determination of attributes associated
with planted forests within these regions may benefit
more from model-based (or model-assisted) sampling
design strategies than plantations with relatively homo-
geneous stands.
A further advantage of model-based surveys is that

they can be used with non-random strategies including
balanced sampling. This permits greater flexibility in the
choice of ground plots, with greater emphasis on achiev-
ing a good range of auxiliary variables as opposed to that
which results from a purely random selection. It is a key
requirement, however, that the models (which are esti-
mated from the selected plots) are representative of the
true models for the study area (Ståhl et al. 2011; Wulder
et al. 2012). Therefore, plots which are relatively more
accessible to forestry personnel could be used as substi-
tutes for those which are inaccessible, provided they
have similar LiDAR metrics. However, this plot selection
strategy would need to be implemented carefully, since
the integrity of the model needs to be maintained. Spe-
cifically the reason for the accessibility needs to be unre-
lated to the key variable of interest, such as timber
volume.
Although LiDAR constitutes an additional cost, the re-

sults of this study have demonstrated that plot sampling
intensity can be reduced yet still achieve the targeted
level of precision for stand volume estimates. Typical
softwood plantation inventory costs in Australia average
around AU$100 per management plot. This equates to
approximately AU$25 per hectare, depending on topog-
raphy, weed occurrence and abundance, and time of
measurement (Chen and Zhu 2012; D. Watt, Planning
Manager, FCNSW, pers. comm.). Also, LiDAR survey
costs can vary considerably depending on the cost of air-
craft mobilisation and flight distance and the specifica-
tions of the data being acquired. The net benefits,
therefore, need to be confirmed through a cost efficiency
analysis taking into account local requirements, condi-
tions and circumstances.
This paper is entirely concerned with sampling at a

fixed point in time. The need to measure changes over
time, for example to estimate growth rates, requires a
sample which is designed to be efficient for this purpose.
In most population surveys changes over time are best
estimated by keeping the sampling units constant or at
least maximising the degree of overlap between succes-
sive surveys (see for example Cochran 1977). However,
some degree of rotation is usually required to remove
sampling units that are no longer representative, or for
other reasons (such as harvesting). In repeated surveys it
will be necessary to replace some of the initial plots
when management or environmental changes have had
an adverse impact on the inventory plots and/or changes
occur within the plantation such as the establishment of
new compartments. If the initial sample was efficient in
terms of estimating the initial population, then it is likely
that it will also be efficient in terms of estimating
changes over time, provided plot rotation is employed
when it becomes necessary. It will be necessary to revisit
inventory plots periodically, both to measure allometric
changes and to recalibrate the regression models. How-
ever, the use of LiDAR data for survey design should re-
sult in a reduced number of inventory plots and also
inform the plot selection process when older plots need
to be rotated out of the survey and replaced by newer
ones. It will also be necessary to obtain updated LiDAR
data as the current data becomes obsolete however the
exact requirements in this respect are still to be deter-
mined (see for example Junttila et al. 2010).
The model-based approach proved to be the preferred

strategy in this study. If using a model-based approach then
balanced sampling with no stratification gives a precision
which is comparable with, or better than, any of the design-
based samples and would normally be the method of
choice. If using a design-based approach then a regression
estimator using a single auxiliary variable is the preferred
option. In the design-based approach the allocation of plots
to strata should be in accordance with the Dalenius-
Hodges approach, after specifying a minimum number of
plots per stratum (a minimum of two plots per stratum is
required for variance estimation). Since the intention is to
have a small overall sample size the number of strata also
needs to be small, at most two or three. The number of
plots required to achieve a 10% PLE will depend on the
variation in timber volume. However, the high correlation
between timber volume and OV means that variation in
OV (together with historical or pilot data) could be used to
determine the number of plots required.
The model-based strategy uses a widely available pack-

age for balanced sampling (“samplecube” Deville (2004))
together with simple linear models to compute the pre-
dicted values. The variance estimates, which are not
considered in this paper, utilise matrix computations
which are available in any mathematical or statistical
package, such as R or Matlab. The next phase of this
study will be to examine other modelling procedures, in
particular the non-parametric techniques of MSN and
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Random Forests and to determine the optimal design
strategy for product volume estimates.

Conclusion
This paper compared the efficiency gains which are achievable
using LiDAR data as a priori auxiliary information in
P. radiata inventory samples. The efficiency gains observed in
the model-based strategy, compared to simple random
sampling, were equivalent to reducing the sample size from
46 to 10 plots in the Green Hills study site and from 79 to 38
plots in the Nundle 2002 AC site. Although the simulations
favoured the model-based approach, the model-assisted
design-based estimators also achieved good levels of precision.
Balanced sampling was used in the model-based strategies as
an alternative to stratification and proved to be an effective
option.
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