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Abstract

Small-footprint, discrete return airborne laser scanning (ALS or lidar) data is increasingly being used by forest managers 
to assist forest inventories. In this study, airborne lidar and plot-based data were collected from a 5 000 ha study site within 
Green Hills State Forest, a Pinus radiata D.Don plantation in southern New South Wales, Australia. A series of area-based 
lidar metrics were extracted and modelled against four inventory attributes (mean tree height, stem density, basal area 
and stand volume) obtained from 63 ground plots. For all response variables, regression tree models had the best model 
fit compared to Random Forest and Bayesian Model Averaging modelling techniques. The best regression tree models 
were based on the lidar metrics: the 5th and 95th height percentiles, minimum vegetation height, density of non-ground 
returns and a measure of spatial variation, the rumple index. All these metrics can be easily derived from the lidar data. 
The best regression tree models for each inventory attribute produced the following R2 values: for mean tree height (m), 
R2 = 0.94; stocking (trees ha-1), R2 = 0.85; basal area (m2 ha-1), R2 = 0.81 and for stand volume, R2 = 0.81 (m3 ha-1) while 
the corresponding relative RMSEs were 5.8%, 23.4%, 15.5% and 22.3%, respectively. These models were then used to 
produce prediction maps over a 50 m grid across the 5 000 ha study site. Results from this study support the operational 
inclusion of airborne lidar data within P. radiata resource inventory systems.

Keywords: discrete-return airborne laser scanning; lidar metrics; inventory; Pinus radiata; regression trees.

Introduction

Systematic assessment of Pinus radiata D.Don 
plantations is essential for predicting current and future 
stand volumes and implementing silvicultural regimes 
aimed at maximising returns. Field-based inventory 
methods and sampling designs are well developed 
and accurate, if sufficient plots capture the full 
range of variability of the population being surveyed. 
However, this approach can also be time consuming 
and hence expensive if required across large areas. 
Keeping plantation database records up to date is 
also becoming more challenging as the commercial 
forestry sector consolidates its workforce, reducing 
staff available for this task. The retrieval of forest-stand 

parameters using remotely sensed data is now viewed 
as a viable solution to tackling these issues. Recent 
reviews of this subject include those by Hyyppä et al., 
(2008) and van Leeuwen & Nieuwenhuis (2010). 

Airborne laser scanners (ALS) belong to the type of 
sensors commonly referred to as lidar (light detection 
and ranging), and are becoming a popular method 
for estimating stand-level forest inventory parameters 
(e.g. Goerndt et al., 2011; Hudak et al., 2008; Hyyppä 
et al., 2008; Maltamo et al., 2006; Tesfamichael et al., 
2010). Small footprint, discrete-return lidar sensors 
operate by rapidly emitting a laser pulse toward a 
target, such as a forest stand and recording the time, 
location, and quantity of the reflected energy. The 
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sensor is mounted on an aircraft in conjunction with 
a highly accurate Global Positioning System (GPS) 
and an inertial measurement unit (IMU), which allows 
correction in data processing caused by the attitude 
(pitch, roll, and yaw) of the aircraft (Hyyppä et al., 
2008; van Leeuwen & Nieuwenhuis, 2010). Unlike 
passive optical sensors, lidar systems can operate 
independently of natural sunlight, and therefore 
are less restricted by weather conditions and more 
operationally flexible by being able to function day or 
night, and under cloud cover. While optical sensors 
provide data in raster form (with pixel values), discrete 
return lidar systems initially provide point data (in x, 
y and z coordinates) which can later be converted to 
raster surfaces. This point data is usually in the format 
of text files or Log ASCII Standard binary files with LAS 
extension (American Society for Photogrammetry and 
Remote Sensing (ASPRS), 2009). Log ASCII Standard 
files contain millions of points and when viewed three 
dimensionally appear as ‘point cloud’ data.

Several overseas studies have shown that ALS-
based techniques are able to produce highly reliable 
estimates for a range of inventory parameters and with 
levels of precision associated with mean stand height 
often superior to that obtained through operational, 
plot-based inventory (Maltamo et al., 2006; Næsset 
& Økland, 2002; Stone et al., 2011; Tesfamichael et 
al., 2010). There are two main approaches for the 
estimation of stand-level inventory attributes from lidar 
data. One is based on the detection of individual tree 
crowns (Heurich, 2008; Holmgren, 2004; Lindberg et 
al., 2010; Maltamo et al., 2004) and the other is an 
area-based statistical approach (ABA), also referred to 
as the canopy height distribution method (Hudak et al., 
2008; Næsset, 2002; Yu et al., 2011). Both approaches 
use canopy height models (CHM) or canopy height-
corrected point clouds to derive a set of features (Yu 
et al., 2010). 

The individual tree based approach focuses on 
detecting and identifying individual trees and producing 
tree-level information such as tree height distributions 
(and derived diameter distributions), so that stand-
level information becomes an aggregate of the tree-
level attributes (Chen et al., 2007; Peuhkurinen et 
al., 2011; Stone et al., 2011). This approach requires 
the use of an algorithm to detect individual trees 
with the lidar data by identifying gradient changes in 
canopy height or by using variable window technology 
(Maltamo et al., 2004; Yu et al., 2011). The expectation 
with the individual-tree approach is that height can be 
determined with no, or a consistent (negative), bias 
such that no site-specific calibration is needed (Hyyppä 
et al., 2008). In dense stands, however, estimates of 
mean stand height and timber volume usually contain 
a negative bias due to interlocking crowns and that 
suppressed crowns become occluded by the dominant 
crowns, making it difficult to isolate individual trees 
(Falkowski et al., 2008). If individual tree crowns can 
be recognised accurately, then this approach tends to 

outperform the area-based methods (Yu et al., 2010). 
The detection of individual trees, however, requires 
higher pulse densities (> 2 points m-2) than the area-
based approach, and this can incur high acquisition 
costs (Packalén & Maltamo, 2007; Peuhkurinen et 
al., 2011). Additional costs can also arise from the 
requirement of higher Global Positioning System (GPS) 
position accuracies for the individual-tree approach 
compared to the area-based statistical approach. 
Also, since lidar data comprise three-dimensional 
canopy information through geo-referenced height 
measurements, stand height is often estimated directly 
from the lidar metrics, whereas stand DBH, volume 
and biomass tend to be derived using height driven 
allometrics. Therefore, individual tree based methods 
also require good physical correspondence with stem 
diameter (DBH) and volume estimation (Hyyppä et al., 
2008; Peuhkurinen et al., 2011). If the number of laser 
pulses is acquired at < 2 points m-2 and canopy cover is 
> 75% then an area-based approach should be given 
priority. From an economic perspective, the area-based 
method is more efficient both in computation and laser 
data acquisitions (Hyyppä et al., 2008; Yu et al., 2010). 
Regardless of which approach is selected as providing 
the best predictive models, these relationships are 
then used to spatially extend model predictions of the 
target variables across all areas of interest where lidar 
data were captured. 

Numerous lidar metrics have been derived and used 
as predictor variables in models for estimating a range 
of forest structure attributes including mean canopy 
height (e.g. Næsset & Økland, 2002), basal area and 
mean standing volume (e.g. Holmgren, 2004; Means et 
al., 2000; Rooker Jensen et al., 2006; Falkowski et al., 
2010), and biomass (e.g. Lim & Treitz, 2004; Ni-Meister 
et al., 2010; van Aardt et al., 2006). These metrics 
include height percentiles, mean height, maximum 
height, coefficient of variation of height, kurtosis, 
skewness and canopy cover percentiles. While a large 
number of lidar metrics can be derived, in general, 
three broad (orthogonal) categories of lidar metrics 
are commonly selected by the modelling process:  
(1) a measure of height (e.g. the 95th percentile height 
of first returns); (2) a variation of height (e.g. standard 
deviation or coefficient of variation of first returns); and (3) 
a measure of vegetation density (usually the proportion 
of first returns greater than a lower height limit) (Frazer 
et al., 2011; Kane et al., 2010; Lefsky et al., 2005). 

Numerous statistical modelling techniques have been 
used to relate the lidar metrics and other auxiliary geo-
referenced variables to field data in order to construct 
predictive models for forest attribute estimation (e.g. 
Goerndt et al., 2011; Straub et al., 2010). The empirical 
relationships between the forest inventory attributes 
and lidar metrics vary between and within forest types. 
Differences between forest types are a function of the 
architecture of the tree species of interest, the local 
environment and the way these are presented by the 
‘cloud’ of lidar data (e.g. acquisition specifications). 
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Even within forest stands of the same species, site 
quality also affects the relationships between lidar data 
and forest attributes (Li et al., 2008; Næsset & Økland, 
2002; Rombouts et al., 2010). The robustness and 
accuracy of these models is dependent, in part, on the 
representativeness of the empirical plot-data, which 
serve as a validation datasets, requiring sufficient 
plots to capture the full range of variability present in 
the area of lidar coverage (Chatterjee et al., 2000; Yu 
et al., 2011). In reality, however, there is a trade-off 
between the accuracy of estimates and the intensity 
of the accompanying field campaign. Obtaining good 
representative field data is not always an easy or 
affordable option, especially in stands established 
on steep terrain or having a significant understorey 
component (e.g. blackberries). The effectiveness of the 
sampling design used to acquire empirical data from 
actual plots, therefore, affects the appropriateness of 
the modelling approach (Maltamo et al., 2011). Plot-
sampling design can be optimised by using either 
existing stand-structure information to create pre-
stratification or the properties of the lidar data as a 
priori information for selection of plot locations within 
stands (Hawbaker et al., 2009; Maltamo et al., 2011; 
van Aardt et al., 2006;). 

Lidar data sets are inherently large with high degree of 
collinearity amongst the derived lidar predictors. The 
prediction models have to account for high-dimensional 
data sets as well as limited field calibration data 
(Monnet et al., 2011). Original modelling approaches 
were based on multiple linear regression and stepwise 
variable selection (Næsset, 2004; Næsset & Økland, 
2002). In 2005, Næsset et al. compared the accuracy 
of three parametric regression techniques (ordinary 
least squares (OLS), seemingly unrelated regression 
(SUR), and partial least squares (PLS)) to retrieve 
plot height. They showed no increase in accuracy of 
parameter retrieval when the more complex parametric 
regression techniques were used and recommended 
the use of ordinary least squares regression. Since 
then, numerous variable extraction and selection 
techniques have been examined, including advanced 
machine-learning techniques. It is now suggested 
that for known linear relationships between the lidar 
metrics and stand attributes, e.g. mean tree height, a 
simple estimator like the multiple linear regressor will 
provide results comparable to more complex nonlinear 
estimators but this might not always be the case for 
more complex relationships (e.g. stand basal area) 
(Dalponte et al., 2011).

Non-parametric methods that have recently received 
attention include: nearest-neighbour techniques 
(Breidenbach et al., 2010; Falkowski, et al., 2010; 
Latifi et al., 2010; Lindberg et al., 2010; McInerney 
et al., 2010; Packalén & Maltamo, 2007); tree-based 
ensemble classifiers such as random forest (RF) 
(Breiman, 2001; Hudak et al., 2008; Falkowski et al., 
2010; Stojanova et al., 2010; Yu et al., 2011); and 
Bayesian approaches (Junttila et al., 2008, 2010). 

Hudak et al. (2008) compared RF classification with 
OLS regression and found that OLS regression 
resulted in strongly biased models, which was not 
the case for RF classification. The bias in the OLS 
classification was assumed to result from artefacts 
in the necessary logarithmic transformations of the 
response variable to ensure linearity. Regression 
estimation in lidar forest surveys can be challenged 
by scale-dependent, nonlinear relationships that arise 
between forest inventory variables and lidar metrics 
(Frazer et al., 2011). Both Hudak et al. (2008) and Yu 
et al. (2011) concluded that nonparametric estimation 
methods based on machine-learning algorithms such 
as RF classification represent a flexible and robust 
alternative to traditional imputation methods. Finally, 
these nonparametric modelling approaches need not be 
restricted to the use of only lidar metrics as predictors, 
information extracted from spectral, topographic and 
terrain coverages can also be incorporated into the 
models, as long as the coverages are of compatible 
resolution and geo-registered (Breidenbach et al., 
2010; Hudak, et al., 2008; Ke et al., 2010; McCoombs 
et al., 2003). 

To our knowledge only one published study has used 
lidar to assess Pinus radiata plantation inventories 
(Rombouts et al., 2010). In their study, linear regression 
was used to predict volume of plantations across a 
range of acquisition ‘campaigns’ for South Australian 
forests aged 7 – 11 years. Volume was found to be 
related primarily to quadratic mean height within this 
age class grouping. While Rombout’s study represents 
an important first step, P. radiata plantations have 
rotations of up to 35 years and can be subjected to 
several thinning regimes. 

Our study of Pinus radiata in New South Wales uses 
lidar-derived metrics to predict four key inventory 
attributes: mean stand height; basal area (m2 ha-1), 
stnnd volume (m3 ha-1); and stocking (stems ha-1) at the 
plot level in a plantation with a broader range of ages 
and stem densities than that studied by Rombouts et al. 
(2010). We compared the effectiveness of three area-
based regression techniques (regression trees, RF 
and Bayesian Model Averaging) to find the model with 
the best predictive capability. Grid-based predictions 
are provided for the entire study area to illustrate the 
practical usability of the tested methods. 

Materials and Methods

The 5 000 ha study area is located within Green 
Hills State Forest (SF) (35.5oS, 148.0oE), near 
Batlow on the southern slopes of New South Wales 
(NSW), Australia and managed by Forests NSW  
(Figure 1). Green Hills SF is a large, commercially 
active Pinus radiata plantation with 835 compartments 
and a net planted area of 20 400 ha. It is situated on 
mostly undulating topography, with a mean elevation of 
750 m and annual rainfall of approximately 1200 mm. 
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The sampling design was that of stratified random 
sampling with strata defined using three age classes 
(10 – 20 years; 21 – 30 years; > 30 years), three 
slope levels (0 < 10 degrees; 10 – 20 degrees;  
> 20 degrees, and three thinning regimes (unthinned; 
first thinning; second thinning) (Table 1). Within Forests 
NSW, compartments are planted to approximately 
1000 stems ha-1, generally thinned between the ages 
13 to 17 years old down to 450-500 stems ha-1 and 
then thinned again after 23 years down to 200 to 250 
stems ha-1. Most compartments are harvested before 
35 years of age. Individually, the full range of 
age classes, slopes and thinning treatments are 
represented in the 5 000 ha study area. However, of 
the 27 possible strata, only sixteen were represented 
in the study area (Table 1). In September 2008, four 
circular ground plots were randomly located and 
established in each stratum to a total of 63 plots (one 
plot not measured; Figure 1). Each ground plot had 

approximately 15 trees per plot and with radii ranging 
from 7 m – 20 m (Table 1). The centre location of each 
ground plot was accurately surveyed using a laser 
theodolite (Leica 2 second T1100 total station) and a 
Differential Global Positioning System (dGPS; Trimble 
Navigation Ltd., Fortitude Valley, Queensland), with 
the differential processing done in real time. Two 
reference pegs were placed on a nearby road or track 
with reasonable sky access for satellite coverage. 
These reference pegs were spatially defined to less 
than 50 mm. The surveyor then traversed to the peg 
located at the plot centre. 

Empirical data for each response variable were 
obtained as follows: every tree in each ground plot 
was labelled and diameter at breast height over bark 
(DBHOB at 1.3 m) and tree height (m) measured. 
Tree height was measured twice using an ultrasonic 
hypsometer (Vertex III, Haglöf, Sweden). A summary 
of the ground-based tree measurements is presented 
in Table 1. Plot volume (m3 ha-1) and basal area 
(m2 ha-1) were calculated using in-house algorithms 
(H. Bi, NSW Department of Primary Industries, pers. 
comm.). 

Lidar imagery acquisition and processing

Small-footprint discrete return lidar data was acquired 
using a Lite Mapper LMS-Q5600 ALS system (Riegl, 
Austria) mounted in a fixed-wing aircraft and supplied 
through Digital Mapping Australia Pty Ltd (Perth, 
Australia). The lidar mission was flown in July 2008 
over the 5 000 ha study area to coincide with winter, 
as this is the period when the blackberry canopies, the 
key understorey weed species in the region, are most 
transparent. In some areas, blackberry infestations 
can be extremely dense making the task of mapping 
the terrain surface with lidar more difficult. No snow 
was present.

The near infra-red (NIR) lidar system was configured 
for a pulse rate of 88 000 pulses second-1, mean 
footprint size of 60 cm diameter, maximum scan 
angle of 15o (off vertical), mean swath width 500 m 
and a mean point density of 2 pulses m-2 (based on 
the non-overlap portion of the swath). The lidar data 
was received in LAS file format with the first and last 
return for each laser pulse recorded but not tagged. 
The return signal intensity (echo strength) values 
were also recorded. The laser scanning (lidar) points 
were processed, geo-referenced and classified by the 
service provider into ground and non-ground categories 
using their proprietary method and TerraScan software 
(TerraSolid, Finland) integrated within a MicroStation 
CAD environment (Bentley Systems, USA). Processed 
lidar point data was supplied on an external drive 
with each file representing a 1 km x 1 km area (tile). 
Coordinates were expressed in Map Grid Australia 
(MGA) zone 55 projection and Geodatic Datum of 
Australia 1994 (GDA94) datum.

 

FIGURE 1: The location of the 5 000 ha study area and the 
63 plots within the Green Hills State Forest Pinus 
radiata planation in the Hume Region of Forests 
NSW. (Overlain on SPOT5 imagery). The location of 
the town of Batlow (-35.522, 148.144 decimal degrees 
(GDA94)) is also shown. 
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A Digital Terrain Model (DTM) at both 0.5 m and 1.0 m 
pixel resolution was constructed from ground point data 
using a standard linear triangulation surface modelling 
technique in Environment for Visualizing Images (ENVI) 
software (Research Systems Incorporated, USA). The 
DTM represents (in theory) the bare terrain elevation 
above sea level. To get the vegetation heights for each 
lidar point, the DTM was substracted from the point 
elevation value. On the occasion where vegetation 
heights were negative, these values were set to zero. 
Sampling density error was inherent in the final DTM 
error but was shown to be, on average, very low  
(< 0.6 m) at tree bases for a sub-set of 145 trees 
selected within the study site (Johnson, 2010). The 
DTM error would have been lower in open ground. 
Johnson (2010) used this lidar dataset to compare 
four surface modelling techniques (Triangular 
Irregular Network (TIN), Inverse Distance Weighting 
(IDW), Kriging, and Spline) used to generate DTMs 
and concluded that each of these surface modelling 
techniques produced similar results at both 0.5 m and 
1.0 m grid cell size resolution. 

Lidar metrics

Lidar metrics were extracted for each of the  
63 plots using ground and non-ground LAS files. 
Using the non-ground height values, we calculated 
the mean, median, mode, maximum, minimum, 5th and 
95th percentile, variance, standard deviation, coefficient 
of variation, range, relative range (i.e. range divided by 
the mean), range of the 95 percentile (height of the  
95th  percentile minus the minimum height), quadratic 
mean canopy height (square root of the sum of 
the squared heights divided by the number of 
heights), skewness and kurtosis. For a series of 
height categories, we calculated the percentage 
of non-ground returns in each category: 0 – 3 m;  
3 – 10 m; 10 – 20 m; and 20 m and greater. Regardless 
of heights, we calculated the density of non-ground 
and ground returns. A rumple index was calculated 
and standardised by the mean height of the plot. 
The rumple index is a measure of canopy structure 
heterogeneity and is the ratio of the surface area of 
the surface created by the non-ground heights divided 
by the area of the flat surface (Kane et al., 2010). The 
rumple index was calculated on both a 0.5 m and 1 m 
grid cell size using surface area functions within the 
GRASS GIS package (GRASS Development Team, 
2010). The derived 1 m DTM was also used to calculate 
the mean slope and aspect for each plot (auxiliary 
predictor variables). All data extraction and analyses 
were conducted using the open-sourced R-statistical 
package v.2.11.1 (R-Development Core Team, 2007), 
in conjunction with freely available libraries written for 
the R package and the GIS package GRASS (GRASS 
Development Team, 2010). The open-source package 
spgrass6 was used to provide the interface between R 
and GRASS and was accessed from the cran.r-project 
website (Bivand, 2010). 

Data were extracted for a range of subsets of the 
non-ground return data files and each dataset was 
modelled separately. Analysis was conducted on 
all the points within the LAS files, hereafter termed 
“raw” data. During the data collection, first and last 
returns were not identified. To account for this we 
created a further two sets of pseudo first return data. 
These datasets were created by generating either a  
0.5 m or a 1 m grid over the lidar returns and taking a 
maximum within each grid cell, hereafter the “0.5 m” 
or the “1 m” data respectively. Within each of these 
three sets of data (0.5 m, 1 m and raw), we calculated 
the aforementioned variables based on all data points 
(hereafter “all”) and on the canopy data, classified 
as all returns greater than 2 m (hereafter “canopy”). 
Finally, for all combinations we calculated the variables 
based on a fixed radius of 30 m around each plot 
centre (hereafter “30 m”) and on the variable radius 
measured on the ground (hereafter “variable radius”). 
In total there were 12 sets of variables calculated. 

Statistical analysis

Five stand response variables were derived from the 
plot measurements, i.e. maximum tree height (m), 
mean tree height (m), stocking (stems ha-1), basal 
area (m2 ha-1) and volume (m3 ha-1) (Table 1). The 
predictor variables, being the derived lidar metrics, 
were then modelled against the response variables. 
Models were prepared for both the raw values and 
the log-transformed values of these variables. The 
log-transformed, predicted values were bias-corrected 
using a correction factor of 0.5 times the mean 
squared error before back transformation (Goerndt 
et al., 2010). A large number of predictor variables 
was available from the lidar data, however, many of 
these variables were highly correlated. We calculated 
a Spearman’s correlation matrix and used the output 
from this to reduce the number of predictor variables 
and also to remove the potential for multi-collinearity in 
the models (Chatterjee et al., 2000). When two or more 
variables were found to have a correlation greater than 
0.7, we selected one variable and removed all others. 
Preference for response-variable retention was given 
to proximal rather than distal variables (after Wintle 
et al., 2005) and to those variables that have been 
reported to be useful in similar studies. The resulting 
set of non-correlated variables were the rumple index 
based on the 0.5 m grid cell, mean slope, height of 
the 5th and 95th percentiles, minimum height, skewness 
and the density of ground and non-ground returns (a 
measure of canopy openness). 

Three modelling approaches were used in the analysis: 
(1) regression trees; (2) RF; and (3) Bayesian Model 
Averaging (BMA). 

1. Regression trees are a simple, but powerful, 
modelling approach to the analysis of complex 
environmental data that can allow for nonlinear 
relationships (De’ath & Fabricius, 2000). This 
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approach seeks to explain variation in data by 
repeatedly splitting data into more homogeneous 
groups using the predictor variables. After the  
initial tree was built, we used a k-fold cross- 
validation analysis to optimise and prune the tree 
(De’ath & Fabricius, 2000). All regression tree 
analysis used the R package called “tree” (Ripley, 
2010).

2. The RF approach extends the regression tree 
approach by “growing” multiple (500) “trees” 
based on subsets of the data and getting the 
majority vote for the outcome (sometimes 
referred to as an ensemble method) (Breiman, 
2001). Random forest analyses used the R 
package randomForest (Liaw & Wiener, 2002). 

3. Bayesian Model Averaging is a linear regression 
modelling approach which builds on the commonly 
applied generalised linear modelling approach 
(e.g. Wintle et al., 2003). The BMA method builds 
linear models based on all combinations of the 
predictor variables and a best set of the models 
are chosen based on the Bayesian Information 
Criterion (BIC). Parameter estimates of the BMA 
model are averaged based on the weighting 
derived from the BIC (Wintle et al., 2003). 
Models were removed from consideration when 
a simpler version of a model (i.e. with a subset of 
the predictor variables) had a better fit, i.e. lower 
BIC. All BMA analyses were conducted using the 
R package called “BMA” (Raftery et al., 2010). 

Comparisons between modelling techniques were 
based on the coefficient of determination (R2). The R2 
value ranges from 0 to 1 and describes the proportion 
of variability in the dataset accounted for in the 
statistical model (Sokal & Rohlf, 1995). A high value 
of R2 means that there is good agreement between 
the observed and modelled values. Differences 
between observed and estimated plot-level means 
were compared using the absolute root mean square 
error (RMSE) and relative RMSE, which is the RMSE 
expressed as a percentage of the observed plot 
means. For each response variable, we considered 
all of the derived models (regardless of the statistical 
approach) with an R2 within 0.05 (or 5%) of the best 
model. We refer to this as the “best set” of models. We 
made predictions from the best set of models for each 
response variable by selecting only the model with the 
highest R2 for each modelling approach represented in 
the best set. The best set of models was then applied 
over the whole study area in the form of a prediction 
map. This procedure was facilitated by the R/GRASS 
interface software package spgrass6 (Bivand, 2010). 
The predictions were made over a 50 m grid across 
the study area. A 50 m grid was selected as it was 
similar to the 30 m circular radius plots used in the 
analysis (2 500 m2 for the grid versus 2827 m2 for the 
30 m plot).

Results

For each response variable, regression trees model 
had the best fit compared to the other two statistical 
approaches. Values of R2 for the best regression tree 
models ranged from 0.95 – 0.93 for the two height 
response variables, i.e. maximum height and mean 
tree height. Values of R2 for the best regression tree 
models ranged from 0.85 – 0.81 for the other three 
variables, i.e. stocking, derived basal area and derived 
stand volume (Table 2). Similarly, relative RMSE values 
from the best regression tree models were the lowest 
for the two height variables, 4.8% for maximum height 
and 5.8% for mean tree height (Table 2). Bayesian 
Model Averaging models had similar R2 values to the 
corresponding regression trees for the two height 
variables but lower values for the other three variables 
(i.e. basal area, stand volume and stocking, Table 2). 
The RMSE values were also correspondingly lower for 
all the best BMA models compared to the regression 
tree models. Model fit for any of the RF models tested 
for all response variables was significantly lower than 
for either the regression tree or BMA models, and are 
not considered further. When the best model from 
each lidar data extraction technique was selected, all 
but one model was based on the 1.0 m filter, with the 
other being from the 0.5 m filter for stocking. Of the 
best models, all but two models were based on the 
lidar data taken from the 30 m plot radius (Table 2). 

An examination of the most commonly selected and 
influential lidar metrics revealed that the best set of 
models for mean tree height from both the regression 
tree and BMA techniques all included the 95th 
percentile height (h95) metric. The best regression tree 
model was almost entirely derived from the height of 
the 95th percentile, with minimum height included on 
a lower split. Minimum height and the density of non-
ground returns featured in 37.5 and 25% of models 
respectively. Ground-return density, skewness and 5th 
percentile height (h5) all appeared in less than 10% of 
models. The rumple index and slope did not occur in 
any of models. The best models using the regression 
tree technique were based on the log-transformed 
values of mean tree height. 

Only three models fell in the best set for the response 
variable of stocking and these were all regression tree 
models. Density of ground returns, minimum height 
and h95 occurred in all three models, with slope, h5 and 
density of non-ground returns each occurring in two of 
the three models. While height of the 95th percentile 
and minimum vegetation height had the strongest 
influence in the best regression tree model, the models 
also included slope, height of the 5th percentile, and 
the density of non-ground and ground returns. 

The response variable basal area was log transformed 
in the three best models, all of which were regression 
tree models. Slope, h5, h95, and the density of ground 
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and non-ground returns occurred in all three models, 
with the rumple index occurring in one of the models. 
In the best regression-tree model, basal area was 
predicted from the rumple index, slope, height of the 5th 
and 95th percentiles, minimum height and the density 
of non-ground and ground returns with height of the 
5th and 95th percentiles and slope having the greatest 
influence on the model. Eleven models formed the 
best set of models predicting the response variable 
of stand volume. All eleven of these models were 
regression-tree models and the top nine all used the 
log transformed values for stand volume. 

Overall, the best regression tree models for predicting 
the response variable of height had simpler structures 
with fewer lidar metrics than the regression-tree models 
predicting stocking, basal area and stand volume. 
Slope and h95 appeared in all models and the density 
of non-ground returns appeared in seven models. The 

remaining explanatory variables appeared in four or 
five of the best set of models. The best model had 
the following explanatory variables: the 5th and 95th 
percentile, slope, skewness and density of non-ground 
returns. As with basal area, h5 and h95 had the greatest 
influence on the estimate of stand volume. 

Predictions

The best regression tree model and the best BMA 
model selected for each of the five response variables 
were used to predict these variables across the study 
region (Table 3). These predicted values were then 
compared with empirical data from the 63 plots. The 
best regression tree models closely predicted observed 
mean and standard deviations for all response 
variables, except for the stocking, which predicted a 
mean of 74 trees ha-1 higher than the measured values 
(Table 3). The best BMA models were more variable in 

Modelling 
method

Response 
Variable

Lidar 
data point 
heights

Grid 
size 
filter (m)

Lidar 
data 
radius

Model 
R2

RMSE Observed 
value

Relative 
RMSE1

Reg. tree Max. tree height 
(m)

all 1.0 30 m 0.95     1.31   27.3     4.8

BMA Max. tree height 
(m)

all 1.0 30 m 0.94     1.49   27.3     5.5

Reg. tree Mean tree height 
(log) (m) 

canopy 1.0 30 m 0.94     1.40   24.0     5.8

BMA Mean tree height 
(log) (m)

canopy 1.0 30 m 0.93     1.59   24.0     6.6

Reg. tree Basal area  
(log) (m2 ha-1)

all 1.0 30 m 0.81     5.36   34.5   15.5

BMA Basal area  
(log) (m2 ha-1)

all 1.0 30 m 0.55     7.67   34.5   22.2

Reg. tree Stocking 
(trees ha-1) 

all 0.5 30 m 0.85 140.8 602.5   23.4

BMA Stocking  
(trees ha-1)

all 1.0 plot 0.71 230.8 602.5   38.3

Reg. tree Volume  
(log) (m3 ha-1)

all 1.0 plot 0.81   67.6 302.8   22.3

BMA Volume  
(log) (m3 ha-1)

all 1.0 30 m 0.71 330.0 302.8 108.9

TABLE 2: R2 values (coefficient of determination) and RMSE (root mean square error) values of the best model for each response variable 
obtained from the regression tree (Reg Tree) and Bayesian Model Averaging (BMA) modelling approaches. 

1 Relative RMSE = (RMSE/Observed value) x 100. 

Response Variable Measured 
mean (m)

Measured 
SD

Reg. tree 
mean (m)

Reg. 
tree SD

BMA 
mean (m)

BMA SD

Maximum tree height   27.3     6.0   27.1     5.8   31.1     5.4
Mean tree height   24.0     5.7   24.2     5.5   24.4     5.7
Stocking 602.5 367.3 676.1 370.6 680.9 295.5
Basal area   34.5   11.6   34.9   11.2   30.9     3.8
Stand volume 302.8 132.3 305.3 109.2 292.1 102.6

SD = standard deviation

TABLE 3: Comparisons of predicted values (mean & standard deviation) for each response variable from the best regression tree (Reg. 
tree) and BMA models and measured values (mean & standard deviation) for the 63 plots.
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performance with mean values for maximum height and 
stocking being higher than the measured values and 
basal area and stand volume being underestimated. 
Similarly, the predicted standard deviations from the 
BMA models were lower for the stocking, basal area 
and to a lesser extent stand volume. Prediction maps 
over a 50 m grid across the 5 000 ha study site were 
produced by applying the best regression tree models 
for mean stand height (Figure 2) and mean stand 
volume (Figure 3). 

Overall, with the data obtained in this study, regression 
tree models consistently outperformed BMA and RF. 
Performance of the models was highest for those 
stand variables that were linearly related to the lidar 
metrics, e.g. mean height.

Discussion 

Plantation managers are constantly seeking ways 
to reduce field inventory costs but also maintain the 
timely assessment of their stands for evaluation and 
planning. Lidar technology is proving to be a viable 
option to fulfil these goals. We have demonstrated 
that the area-based extraction of lidar metrics can be 
modelled to accurately predict stand height, basal area 
and volume across a broad range of ages and stem 
densities in a P. radiata plantation using a regression 
tree approach. These predictive models can be 
spatially extrapolated, producing high resolution maps 
that visually identify variation between and within 
compartments across the study area. 

Stand height was most strongly influenced by the height 
of the 95th percentile (h95). Tesfamichael et al. (2010) 
investigating the impact of discrete-return lidar point 
density on estimations of mean and dominant plot-
level tree height in Eucalyptus grandis Hill ex Maiden 
plantations, reported that all their models comprised of 
higher order percentiles, with the 95th percentile being 
the most prevalent. Height of the 95th percentile is a 
better predictor than maximum height as it removes 
the influence of outliers making it a more reliable height 
estimate (Næsset & Økland, 2002; Kane et al., 2010). 
Heights of the 5th and 95th percentile also had a strong 
influence on the other models predicting basal area, 
volume and stocking. Slope also appears in these 
models and for trees of similar size, there are greater 
basal area and volumes on the steeper slopes. This is 
probably a reflection of delays in thinning schedules 
on steeper slopes within the study area. Alternatively it 
could be related to the variability in horizontal distance 
between tree rows on flat versus steep ground. 

Good relationships were also found for basal area 
and stand volume when using a regression tree 
approach although these two variables have a more 
complex relationship with the lidar height metrics  
(Bi et al., 2010). The models for stocking had the lowest 
coefficient of determination values (R2) and hence 
would be the least reliable. This has been reported for 
lidar studies in other forest systems (e.g. Magnussen 
et al., 2009). For example, while Peuhkurinen et al. 
(2011) reported relative RMSE values of 2.3% for 
mean height, 13.5% for stand volume and 15.0% for 
basal area in a Pinus sylvestris (L.) stand using an 
area-based methodology, the RMSE% for stocking, in 
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FIGURE 2: Prediction map for mean tree height over a 50 m grid covering the 5 000 ha study site within the Green Hills State Forest Pinus 
radiata plantation.
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contrast, increased to 32.5%. Detection of suppressed 
trees or individual tree crowns in dense canopies from 
a height model based on lidar data is difficult, although 
Maltamo et al. (2004) demonstrated that it is possible 
to predict stem density by using theoretical distribution 
functions.

For our datasets, the regression tree models  
consistently outperformed BMA and RF models. 
Regression tree models were consistently the modelling 
technique with the highest variance explained for all five 
of the response variables tested. Other studies have 
had similar success with classification and regression 
trees (e.g. Coops et al., 2006). Linear regression using 
BMA provided models with strong support for the 
height metrics, but did not perform well for the derived 
metrics. The strong relationship occurred due to the 
linear relationships between stand height and the 
lidar metrics. Relationships between the lidar metrics 
and stocking, basal area or volume are expected to 
be non-linear (e.g. Bi et al., 2010). While Rombouts 
et al. (2010) found strong linear relationships between 
lidar metrics and volume, their study only considered 
plantations aged 7 to 11 years and within a single 
thinning regime. Across a greater range of ages and 
thinning treatments these simple (linear) relationships 
are unlikely to hold. 

More derived regression tree approaches such as RF 
models (Breiman, 2001; Yu, et al., 2011), Adaboost 
(Freund & Schapire, 1996) and boosted regression 
tree models (Elith et al., 2008) would be expected 

to further improve the predictive ability of regression 
trees. Random forests is a tree-based ensemble 
classifier that has been shown to be well suited to the 
high dimensionality associated with remotely sensed 
datasets (e.g. Stojanova, et al., 2010). However, in 
our study, the fit of RF models was lower than those 
of regression trees models. Although not presented 
here, similar results were also obtained when data 
were analysed using boosted regression trees. The 
poor performance of these advanced techniques is 
probably related to the relatively small number (n = 63) 
of sample plots that were used relative to the variation 
in the data. Random forest models use a sub-sampling 
procedure to build each of the 500 “trees” within the 
forest (Breiman, 2001). The assessment plots had 
relatively low replication of various combinations 
of height, age and thinning treatment (i.e. 4). Sub-
sampling has the potential to entirely exclude some 
combinations resulting in poor predictions. This may 
be overcome by a larger number (>100) of plots. The 
initial investment in well replicated reference field data 
for lidar model development is strongly advocated as 
it enables modellers to take advantage of state-of-the-
art machine learning techniques for developing reliable 
models with high precision and accuracy that can be 
applied broadly over a plantation estate (Stojanova 
et al., 2010). These models are not static and can be 
improved through a routine validation process based 
on an optimised (plot or single tree) sampling design 
within an inventory program (Hawbaker et al., 2009; 
Maltamo et al., 2011; Parker & Evans, 2009). 

FIGURE 3: Prediction map for mean stand volume over a 50 m grid covering the 5 000 ha study site within the Green Hills State Forest 
Pinus radiata plantation.
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It can be difficult to compare studies due to differences 
in forest type; acquisition specifications and modelling 
techniques. Overall, however, our results based on a 
large, intensively managed Pinus radiata plantation, 
concur with the findings from other studies, although 
derived from a different forest type; acquisition 
specifications and modelling techniques (e.g. Goerndt 
et al., 2010; Peuhkurinen et al., 2011; Yu et al., 2011). In 
particular, pioneering work by Magnussen & Boudewyn 
(1998) reported a strong correlation (R2 = 0.8, SD = 2.2 
m) between lidar metrics and field estimates for mean 
stand height in a Douglas-fir (Pseudotsuga menziesii 
var. menziesii [Mirb.] Franco) stand whereas our best 
models for maximum tree height and mean tree height 
produced R2 values of 0.95 and 0.94 and RMSE values 
of 1.31 m and 1.40 m respectively. Computing capacity, 
data processing and modelling methodologies have 
all improved over the past ten years, resulting in R2 
values > 0.9 now routinely reported (e.g. Næsset & 
Økland, 2002; Næsset, 2004; Goerndt et al., 2010).

Further Research

Both area-based and individual-tree based methods 
can perform poorly when estimating stem density. 
Prediction accuracy for stocking for some stands (such 
as homogenously thinned stands) can be improved 
through the detection of individual tree crowns (e.g. 
Goerndt, et al., 2010; Yu, et al., 2010). However,  
success in the detection of individual tree crowns in 
dense (unthinned) stands is dependent on the pulse 
density of lidar data as it directly influences the 
performance of the tree crown detection process. A 
higher density of lidar pulses ensures improved crown 
detection but this comes at a higher cost of acquisition. 
Further research is required to improve the accuracy 
and efficiency of individual tree counts using lidar 
data. This will involve identifying Pinus radiata stand 
characteristics best suited for either the application 
of the area-based or individual tree approaches, 
including the optimisation of maxima selection rules 
based on multi-scale focal statistics. Secondly, 
stratified sampling designs based on silvicultural 
history have been commonly applied but lidar data 
could be used to optimise sampling designs in stands 
requiring additional information related to stem quality 
and product assortment. Finally, model validation with 
ground-based data can be significantly hampered 
by positional errors associated with both the field 
measurements and the remotely sensed data (Næsset 
& Økland, 2002). Work into minimising these co-
registration errors is required. For example, a network 
of permanent reference marks, built to surveying 
specifications, could be established in larger plantations. 

Conclusions

Increasing costs of field surveys, coupled with ever-
increasing demands for collection of both timely 

and more detailed information, are directing forest 
managers to consider alternatives approaches to 
forest and plantation assessment. Our study supports 
the application of lidar (small-footprint airborne laser 
scanning) as a method for estimating several key 
inventory attributes in Pinus radiata using an area-
based modelling approach. These models can be 
represented spatially on a grid basis across plantations 
to provide a snap-shot of the standing plantation 
resource as well as potentially useful inputs into future 
yield modelling. At present, the collection of lidar is 
viewed as relatively expensive but costs per product 
decrease if multiple products can be derived from the 
same lidar data, both within companies and through 
collaborative lidar acquisition missions.
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