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Abstract

Many invasive plants and animals disperse preferentially through linear networks in the landscape, including road networks, 
riparian corridors, and power transmission lines. Unless the network of interest is small, or the budget for surveillance is 
large, it may be necessary to draw inferences from a sample rather than a complete census on the network. Desired 
features of a surveillance system to detect and quantify invasion include: (1) the ability to make unbiased statements about 
the spatial extent of invasion, the abundance of the invading organism, and the degree of impact; (2) the ability to quantify 
the uncertainty associated with those statements; (3) the ability to sample by moving within the network in a reasonable 
fashion, and with little wasted non-measurement time; and (4) the ability to incorporate auxiliary information (such as 
remotely sensed data, ecological models, or expert opinion) to direct sampling where it will be most fruitful. Randomised 
graph sampling (RGS) has all of these attributes. The network of interest (such as a road network) is recomposed into 
a graph, consisting of vertices (such as road intersections) and edges (such as road segments connecting nodes). The 
vertices and edges are used to construct paths representing reasonable sampling routes through the network; these paths 
are then sampled, potentially with unequal probability. Randomised graph sampling is unbiased, and the incorporation of 
auxiliary information can dramatically reduce sample variances. We illustrate RGS using simplified examples, and a survey 
of Polygonum cuspidatum (Siebold & Zucc.) within a high-priority conservation region in southern Maine, USA.
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impact invasives to develop approaches to “monitor 
invasive species populations accurately and reliably,” 
but guidance toward meeting that directive is sparse. 
Accuracy and reliability demand that surveillance and 
monitoring approaches be statistically sound; realistic 
budget constraints demand that those activities be 
efficient and feasible. A report by the Ecological 
Society of America (Lodge et al., 2006) also highlights 
the need for efficiency, recognising the high cost of 
sampling for organisms that may often be rare and 

Introduction 

Invasive plants and insects threaten the safe, high-
quality, affordable raw materials and sustaining 
environmental services provided by forested lands 
(National Research Council (NRC), 2002). However, 
monitoring and surveillance of invasive species remains 
a challenging aspect of the management chain. In 
the United States of America (USA), Executive Order 
13112 instructed Federal agencies whose activities 
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clustered on the landscape. As Stark et al. (2006) note, 
the need for, and interest in, risk-based biosurveillance 
has outstripped the development of sampling methods 
that are both theoretically and practically attractive.

Unless one has the resources to census an entire 
population, or an entire region of interest, sampling is 
fundamental to scientific inference and management 
decision making. Sampling theory (as a branch 
of statistics) has always been well-grounded in 
agricultural and forestry applications, beginning with 
the early work of Sir R. A. Fisher at Rothamsted, 
UK (e.g. Fisher, 1925) and the pioneering studies of 
Hubback (1927). A great deal of sampling in agriculture 
and forestry is focused on estimating the means (or 
totals) of attributes in two-dimensional spaces, such as 
farm fields or forest stands. It is often useful to be able 
to estimate sampling variances, not only to evaluate 
the certainty of the results in hand but to be able to 
design future sampling campaigns and experiments 
in a cost-effective manner (Gregoire & Valentine, 
2008). Within forest biosecurity, sampling theory has 
progressed to statements of confidence about what is 
not there: if we fail to detect an incursion, is it because 
the organism is not there, or because we didn’t 
look hard enough (Coulston et al., 2008)? Whether 
estimating abundance and impact, or substantiating 
lack of incursion, a sound, probability-based sampling 
approach is fundamental to efforts to detect and 
combat invasive species (Lodge et al., 2006).

Unfortunately, the focus on sampling in two-dimensional 
regions (such as fields or forest stands) has led to a 
paucity of tools for sampling in linear networks (such 
as road networks). Yet surveillance and monitoring in 
forest biosecurity may often need to focus on road and 
other infrastructure networks, for three main reasons:

1.	 some organisms of concern disperse along such 
networks. For example, many invasive plants 
preferentially disperse along road networks and 
power lines, because these are associated with 
low canopy cover and elevated soil disturbance 
(e.g. Spellenberg, 1998; Hansen & Clevenger, 
2005);

2.	 anthropogenic mechanisms of dispersal often 
facilitate the movement of invasive organisms 
along such networks. For example, the transport 
of wood-boring insects in contaminated logs 
and in wooden packing materials occurs along 
road and rail networks, often leading to long-
distance dispersal (NRC, 2002; Chornesky et 
al., 2005). Mowing and other forms of right-
of-way maintenance often serve to propagate 
invasive organisms that can reproduce from plant 
fragments (e.g. Oliver, 1996). Soil pathogens 
(including some key Phytophthora species) may 
be dispersed along trail networks by contaminated 
boots (Webber & Rose, 2008); and

3.	 given limited resources for surveillance, it may 
be more efficient to concentrate effort along 
transportation networks because potential 
measurement time is not spent in off-network 
travel. Depending on the sample objectives 
and given limited resources, it could be more 
efficient to constrain the sampling frame and 
concentrate effort along transportation networks 
for such species. Surveillance efforts can cover 
a greater geographic region within a finite budget 
if measurement focuses on, and respects the 
opportunities and constraints for field work 
imposed by, the transportation network.

Furthermore, as we will suggest later in this paper, 
sampling for invasive arthropods or pathogens within a 
discrete set of susceptible stands or sites can also be 
cast advantageously as a network sampling problem.

Recently, we have been involved in the development 
of a new sampling method called Randomised Graph 
Sampling (RGS) (Ducey, in press; Knapp & Ducey, 
2010). Randomised graph sampling is specifically 
designed for sampling networks such as road, rail, 
power line, and trail networks; Knapp and Ducey 
(2010) presented an application for recreational trail 
impact assessment. Ducey (in press) has presented 
mathematical proofs of the statistical attributes of 
RGS. Randomised graph sampling has several 
characteristics that are desirable in a sampling method 
for surveillance and monitoring:

•	 it allows unbiased estimates of the current status 
of, and change in, the spatial extent, abundance, 
and impacts of an invading organism, because it 
is probability-based;

•	 it allows unbiased estimates of sampling variance, 
and provides the ability to quantify uncertainty, 
again because it is probability-based;

•	 it is specifically designed to allow efficient sampling 
while moving through the network, using routes 
(or “walks”) that respect operational constraints. 
These can include barriers to movement, as well 
as minimum or maximum time or cost constraints 
for an operational “piece” of sampling effort (such 
as a single crew-day); and

•	 it allows the use of auxiliary information (such as 
remotely sensed data, ecological models, expert 
opinion, or volunteer surveys) to focus sampling 
effort where the organism is most likely to occur, 
improving sample efficiency and the probability 
of detecting an incursion. However, it does 
not sacrifice its probability foundation, and so 
continues to allow unbiased estimates when such 
information is used.

The desirable attributes that depend on being a 
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probability sampling method are shared by common 
sampling methods, including simple random sampling 
and stratified sampling, while other methods (such as 
importance sampling) also allow the use of auxiliary 
information. Randomised graph sampling combines 
these advantages with operational considerations that 
may be important in practice.

The goal of this paper is to suggest the application 
of RGS within a biosecurity context, and to outline 
possible situations where it might be used. Our 
emphasis will be conceptual and practical rather than 
mathematical. Unbiasedness and variance concepts 
will be demonstrated using simple examples rather 
than proofs (as in Ducey in press). We will illustrate 
one possible application with a survey of an invasive 
plant (Polygonum cuspidatum Siebold & Zucc.; 
also Fallopia japonica Houtt.) (Japanese knotweed) 
along roadsides in a high-value conservation area in 
southern Maine, USA.

Randomised graph sampling

Overview

Randomised graph sampling is a probability-based 
sampling method originally designed for estimating 
the parameters of statistical populations associated 
with linear networks, such as road networks. In 
mathematical terms, any such network can be 
described as a “graph”: a collection of “edges” (for 
example, road segments) connecting “vertices” (for 
example, road intersections). The attributes of interest 
might be located along the edges (for example, 
instances of an invasive plant occurring along road 
segments) or at the vertices (for example, the vertices 
might be reasonable trap locations for pheromone 
trapping of a wood-boring insect; the edges would 
then represent reasonable travel routes between trap 
locations).

Figure 1 shows a simplified example of a mathematical 
graph that could represent a road network. In this case, 
the edges represent road segments between vertices 
(intersections), and are labelled with attribute values 
(including the road segment length, and the number of 
metres of road frontage that are infested with an invasive 
plant). Rather than sampling individual vertices or 
edges, in RGS we sample “walks” or feasible sampling 
routes. (The term “walk” is taken from graph theory in 
mathematics; in practical situations a survey might be 
conducted by walking, driving, or any other suitable 
travel method). For example, if all feasible routes must 
start and end at vertex A at the bottom of Figure 1, 
then ABCDBA, ABCDEBA, ABCDECBA, and ABCEBA 
represent candidate walks. Statistical estimation in 
RGS allows for the overlap among walks, and for the 
possibility (and even desirability!) of assigning some 
walks higher probabilities of selection than others.

A

B

C

D

E

3 km long,
10m infested

14 km long,
125m infested

6 km long,
140m infested

5 km long,
no infestation

5 km long,
25m infested

12 km long,
100m infested

5 km long,
100m infested

FIGURE 1: An example graph in which attributes (total metres 
            of road frontage infested by an invasive plant) are 
                    associated with edges (road segments).

From a practical standpoint, RGS includes the 
following steps:

I.    identify the network of interest. For example, one 
would obtain a road map (or GIS1 layer) and label 
the edges and vertices;

II.  identify an adequate set of “walks” or surveying 
routes. Routes should be constrained to reflect 
operational considerations (e.g. maximum travel 
times). The set of routes does not need to be 
exhaustive. However, each edge and vertex 
needs to appear in at least one walk;

III. assign sampling probabilities to each walk. In 
the simplest case, each walk is assigned equal 
probability (for example, if there are 100 walks, 
each walk is assigned a 1% chance). However, this 
is not necessary, and indeed this is where auxiliary 
information can be employed to great advantage. 
For example, if interpretation of remotely sensed 
imagery suggests a concentration of a susceptible 
forest type along particular walks, those walks 
can be assigned higher probability than walks 
that do not appear to include susceptible types. 
Concentrating sampling effort in areas where the 
threat is most likely to occur increases efficiency 
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	     sx  =  		             XRGS,k  –  X                      [4]

provides an unbiased estimate of the squared standard 
error of     if walks were sampled with replacement, or 
a trivially biased estimate if walk were sampled without 
replacement and the number of walks in the list is 
considerably greater than n (as would almost certainly 
be true in application, unless the graph were very 
small or the budget for monitoring and surveillance 
were unusually large).

When the xi themselves are known imperfectly, either 
because they are measured on sub-samples of the 
graph elements or because of imperfect detectability, 
then Equation [4] will underestimate the uncertainty 
in    . However, the probability basis of RGS provides 
straightforward error propagation in such cases. For 
example, if graph elements are sub-sampled, then 
RGS is a variable-probability first stage in a two-stage 
sampling approach (cf. Thompson, 2002, ch. 13), and 
should be analysed accordingly.

Assignment of probabilities

Perhaps the most unsettling aspect of RGS for 
some readers may be the assignment of selection 
probabilities qj for walks that occurs in step (III), with 
direct impact on the inclusion probabilities Pi for 
individual graph elements. It may seem paradoxical 
that the probabilities can vary – perhaps even arbitrarily, 
or based on a subjective assessment of where an 
organism might be or where change is likely to occur – 
and yet the resulting estimates will be unbiased.

Unequal probability sampling has a long history in 
forestry. Perhaps the most familiar example is horizontal 
point sampling (also known as prism sampling or 
variable radius plot sampling), in which sample trees 
are selected with probability proportional to their basal 
area. Indeed, the practical and theoretical development 
of horizontal point sampling by Bitterlich (1948) and 
Grosenbaugh (1958) was contemporaneous with 
the general theoretical development of unequal 
probability sampling in the statistical literature (Horvitz 
& Thompson, 1952). As readers will recall, horizontal 
point sampling is very efficient for estimating tree 
volume and biomass because the basal areas of 
individual trees, and therefore their probabilities of 
selection, are highly correlated with volume and 
biomass. In general, Horvitz-Thompson estimators 
are unbiased no matter what probabilities Pi are used 
(provided the Pi are all greater than zero) (Thompson, 
2002, ch. 6). The variance of a Horvitz-Thompson 
estimator will be low whenever the ratio xi/Pi is nearly 
constant (Horvitz & Thompson, 1952). The price of 
poor probability assignment is high variance, not bias.

The most obvious choice of qj is to set them all equal. 
For example, if one has generated a list of 100 walks 

X

X

) óó /(ó4h ˆˆˆˆ +=

and reduces sampling variance; the effect of 
unequal probability sampling is adjusted using 
appropriate estimating equations in step V, below;

IV. select walks at random using the assigned 
probabilities, and conduct the appropriate 
measurements on each walk; and

V.    using the sampling probabilities developed in Step 
III, and the results obtained in Step (IV), compute 
the desired estimates using the appropriate 
equations (Ducey, in press). If multiple walks have 
been selected, compute the standard error and 
confidence limits.

Estimating equations

Before proceeding to a more general discussion 
of steps (I) through (V), and their implementation in 
a biosecurity context, it will be useful to review the 
estimating equations for means, totals, and standard 
errors that must be used in step (V). For the moment, 
consider the problem of estimating the total of some 
attribute over the graph based on the selection of a 
single walk or sampling route. The true total, X, is fixed 
but unknown to us. We only know the attribute values 
xi for the graph elements (edges or vertices) that are 
actually in the sample. The basic estimator in RGS is a 
Horvitz and Thompson (1952) estimator,

	 XRGS    =          			   [1]

where Pi is the probability that the i th element will appear 
in a randomly selected walk. Let qj be the probability 
of selecting the j th walk from the list developed in step 
(III), using the probabilities chosen in step (IV). (The qj 
must conform to the usual rules for probabilities: they 
must all be greater than zero, and they must sum to 
one over all the walks in the list.) Let dij be a simple 
indicator variable that equals 1 if the ith graph element 
is included in the j th walk, and equals 0 otherwise. 
Then it is easy to show that

	 Pi =    j dij qj			               [2]

where the summation is over all the walks in the list. 
Equation [2] can be calculated for every graph element 
in advance of sampling, because it does not depend 
on the xi. Once a walk has been selected, Equation 
[1] can be used to provide an unbiased estimate of the 
total X.

Now suppose we have selected multiple walks, and let
XRGS,k denote the estimate calculated from the k th walk 
out of n selected walks. Then the usual sample mean

             X =            XRGS,k                                           [3]

provides the best unbiased estimate of X, and

i 
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in step (II), one would set qj = 0.01 for every walk. 
This may not result in equal Pi values for all the graph 
elements, however, as some elements may occur 
in multiple walks. For example, if all walks for the 
graph in Figure 1 must start and end at vertex A, then 
edge AB has a 100% chance of inclusion no matter 
how many walks are in the list or what their selection 
probabilities may be. Indeed, equal assignment of the 
qj may lead to inclusion probabilities Pi that are poorly 
correlated (or even negatively correlated!) with the xi, 
depending on the structure of the graph and the spatial 
distribution of the attribute of interest.

To reduce the variance of RGS estimates by improving 
the correlation between the Pi and the xi, it will often 
be helpful to introduce auxiliary information. The 
simplest case, and one that is an obvious choice when 
the attributes occur on graph edges as in Figure 1, 
is to use the edge lengths as auxiliary information. 
Intuitively, all else being equal, a short graph edge will 
be likely to contain less of an interesting organism or 
change than will a long graph edge, and the same is 
true when those edges are combined into walks. If the 
length of an edge is li, we might assign the selection 
probability of the j th walk proportional to the total length 
of its measured edges Lj:

	 Lj = i dij li			                [5]	
					   
	 qj = Lj  / j Lj

However, all else may not be equal. If we have better 
information about where an attribute is likely to be 
found (whether that attribute is the abundance of an 
organism, or a rate of change), we are free to use that 
to reduce the variance. “Better information” might come 
from a sophisticated computer model, from information 
on possible mechanisms of spread within the graph, 
from previous surveys (including volunteer surveys 
that might be incomplete or only partially reliable), 
from expert opinion, or even crude and subjective 
information. Whatever the source of the information, 
suppose we can capture it as a positive number or 
covariate yi for each element on the graph, in which 
the greater the value of yi the more likely it is that the 
graph element contains the attribute of interest. Then a 
simple approach is to set the selection probability of a 
walk proportional to the sum of its covariate values Yj:

	 Yj =    i dij yi			                [6]	
					   
	 qj = Yj  /      j Yj

These simple alternatives are not the only ones 
available. Ducey (in press) discusses further 
techniques for optimising the qj, though these require 
some mathematics that are beyond the scope of this 
paper. If there is great uncertainty about whether the 
available covariates will indeed be correlated with 
the attributes of interest, then other estimators for 

multiple walks (such as a generalised ratio estimator; 
Thompson 2002, pp. 76-79) may provide considerable 
reduction in variance in exchange for a small amount 
of bias. Exploration of those alternatives is likewise 
outside the scope of this overview.

Invasive plant survey

Let us now return to Figure 1, which depicts a highly 
simplified invasive plant survey scenario. The plant 
of interest is found primarily along roads, so the 
road network forms our graph. Alternatively, we may 
be interested in the road network because roadside 
rights-of-way are our area of responsibility; we may 
be surveying roadsides as part of a rapid assessment, 
perhaps in advance of some more detailed survey to 
be done later; or we may simply lack the resources 
or authority to conduct a thorough reconnaissance 
of interior areas and are focusing on roads out of 
necessity. In any case, the roads are the domain of 
our sampling and our inference. Randomised graph 
sampling strategies when roads and interior areas are 
of interest will be discussed below.

Obtaining a map of the road network, and labelling 
the map so that edges and vertices are identifiable, 
completes step (I) in RGS. Step (II) is to develop a list of 
walks or feasible sampling routes. Every edge or vertex 
must occur in at least one walk in the list; otherwise, 
the list may reflect any operational constraints we 
may wish to impose or desired features we wish to 
incorporate. Earlier, we suggested that if all walks must 
begin and end at vertex A, then ABCDBA, ABCDEBA, 
ABCDECBA, and ABCEBA would represent candidate 
walks. These four walks also form an adequate list, 
because every road segment appears in at least one 
walk. However, we are free to add ABCDCBA to the list 
if it suits our fancy, and it does (there is an ice cream 
stand at intersection C that makes a hot afternoon of 
field work more tolerable for the crew). Our list now 
includes 5 walks. ABA would certainly be an easy walk 
to measure, but it does not cover any graph elements 
that are not included in other walks, and it does not suit 
our fancy so we exclude it. If including or excluding a 
walk confers practical or even perceived advantages 
to those responsible for designing or executing the 
campaign, and importantly does no other harm, then it 
is permissible. So long as the list of walks is adequate, 
it does not affect the unbiasedness of RGS.

We now reach step (III), the assignment of selection 
probabilities to the individual walks. To illustrate the 
simplest case, suppose we assign an equal selection 
probability qj = 0.2 to each of the 5 walks in our list. 
By examining the list of walks, we can determine the 
Pi for each of the edges of the graph. (We ignore the 
vertices, as the attribute of interest – number of metres 
of infested roadside – is associated exclusively with 
the edges.) Edges AB and BC occur in all 5 walks, so 
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PAB = PBC= 1. By contrast, edge BD occurs in only one 
walk, so PBD = 0.2. The inclusion probabilities for the 
other edges are PBE = 0.4, PCD = 0.8, PCE = 0.4, and 
PDE = 0.4.

Steps (IV) and (V) are to select walks, perform the 
measurements, and compute the estimates associated 
with the selected walks. Because the probabilities are 
equal, many random or pseudo-random techniques 
could be used to select walks. The use of a random 
number generator in a computer would be ideal, but for 
the sake of illustration suppose we place 5 numbers 
in a hat, and happen to draw the number 2 which 
corresponds to the second walk in the list (ABCDEBA). 
We conduct our field work (with required ice cream 
stop) and obtain the xi values for each segment.
 XRGS for this walk can be calculated as:

  XRGS = 10/1.0 + 25/1.0 + 140/0.8 + 0/0.4 + 100/0.4 = 460 m

The results for all the walks in the list are shown in 
Table 1. Because the average of the values of XRGS, 
weighted by the equal selection probabilities, equals 
the true total invasion of the graph (500 m), we can 
see that the RGS estimate is unbiased. The weighted 
mean squared deviation of XRGS from the true value is 
the variance of an estimate from a single walk, and that 
translates into a CV of 40% for single-walk estimates 
when sampling is with equal probability.

Now suppose that instead of equal probability 
sampling, we had used sampling with probability 
proportional to the total measured length of each walk 
in step (III). For example, the measured length of walk 
ABCDBA is 28 km (we do not double-count edges 
when they are traversed a second time on the return 
trip). The measured lengths for the other four walks 
are 31 km, 24 km, 25 km, and 14 km, respectively, and 
the total over the five walks is 122 km. The selection 
probability of the first walk is thus 28/122 = 0.2295. 
The selection probabilities for the other walks are 

given in Table 1. Given the selection probabilities 
of the walks, calculation of the Pi is straightforward. 
As before, edges AB and BC occur in all 5 walks, so  
PAB = PBC = 1. By contrast, edge BD occurs only in the 
first walk, so PBD = 0.2295. The inclusion probabilities 
for the other edges are PBE = 0.4590, PCD= 0.7951, 
PCE = 0.4016, and PDE = 0.4508.

Now suppose that once again, we draw walk 2 
(ABCDEBA) as our sample. (We will definitely have 
needed a random number generator to draw the walks 
with unequal probability.) Now XRGS for this walk can 
be calculated as

 XRGS = 10/1.0 + 25/1.0 + 140/0.7951 + 0/0.4508 +
                           100/0.4590 = 428.94 m

The results for all the walks in the list are shown in 
Table 1. Because the average of the values of XRGS, 
weighted by the unequal selection probabilities, equals 
the true total invasion of the graph (500 m), we can see 
once again that the RGS estimate is unbiased. The 
weighted mean squared deviation of XRGS from the true 
value again gives variance of an estimate from a single 
walk, which translates into a CV of 32% for single-walk 
estimates. In this case, even the simple expedient 
of using edge length as the covariate has led to an 
appreciable reduction in variance.

The example depicted in Figure 1 is highly simplified. 
Such a simple graph would hardly require subsampling 
in real life. However, in application real road, trail, rail, 
and power-line networks can quickly generate a large 
number of edges which, in feasible combinations, 
can allow development of a very large number of 
candidate walks. In practice, a GIS would be a helpful 
tool in generating the graph, designing feasible walks, 
evaluating covariates, and assigning probabilities. The 
unbiasedness of RGS does not, however, depend on 
the complexity of the graph or the technology used to 
manage information about it. 

TABLE 1: Estimates associated with sampling the graph depicted in Figure 1, when selection probabilities for walk are equal and with 
probability proportional to length.

Walk Equal Probability   Probability Proportional to Length

          qj    XRGS qj    XRGS

ABCDBA      0.2 835 0.2295   755.7
ABCDEBA      0.2 460 0.2541   428.9
ABCDECBA      0.2 460 0.1967   460.1
ABCEBA      0.2 535 0.2049   501.8
ABCBA      0.2 210 0.1148    211.1

E [ XRGS] 500   E [XRGS]   500

  CV (%)      40.1           CV (%)     32.4
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Surveillance of susceptible habitats

In its original conception, RGS closely followed the 
first example, in which attributes occur on the edges 
of the graph, and the graph directly mirrored a physical 
network such as a road or trail network. However, 
other sampling situations may be thought of as graph 
sampling problems, especially if travel costs and 
feasibility are important practical considerations.

As an example, suppose we are interested in 
surveillance for a lethal forest pathogen. The pathogen 
is known to affect a tree species that occurs in a 
recognisable stand type. However, existing stand 
maps or the analysis of remotely sensed data may 
identify far more patches of the susceptible stand type 
than can be visited in a reasonable field campaign. 
Furthermore, travel time between stands may be 
susbtantial. It might be possible, in principle, to draw 
a simple random sample of the susceptible stands, 
but visiting that simple random sample would require 
travelling directly past other, non-sampled stands that 
could easily have been visited en route. If travel is costly 
relative to sampling, then the overall cost efficiency of 
the simple random sample will be low. Randomised 
graph sampling would allow greater efficiency, by 
taking advantage of the proximity of stands and 
combining them into feasible sampling walks that 
respect operational advantages and constraints.

Figure 2 illustrates such a scenario. The field office 
(vertex O) must be the origin of all feasible walks. In 
step (I) of RGS, we would use available information 
to develop a list of susceptible stands; these become 
the vertices of the graph. The edges of the graph 
are feasible travel routes connecting nearby stands. 
Identifying reasonable routes (or at least reasonable 
travel time requirements), as well as barriers (such as 
unbridged rivers) that might prevent direct movement 
between nearby stands, would be an important 
component of graph identification in step (I).

Once step (I) is complete, we move to step (II), the 
identification of feasible walks. Suppose that given the 
travel times and field requirements, it is reasonable to 
sample 3 stands in a field day; successful completion 
of 4 stands would be unlikely, while completing only 2 
stands would not fully use the available time. Feasible 
walks might then include OABC, OABD, OACE, 
OGFE, and OGFH (the return portions are not listed, 
for simplicity). All vertices appear in at least one walk, 
so this list is adequate for RGS.

In step (III), we assign probabilities. As in the previous 
example, we have 5 walks in the list, so we would 
assign qj = 0.2 to each walk. In that case, the Pi are 
just the number of walks that each vertex occurs in, 
multiplied by 0.2: 0.6 for A, 0.4 for B and C, 0.2 for D, 
0.4 for E through G, and 0.2 for H.

In step (IV), we randomly select one or more walks and 
perform the field work. If we record a 1 for each stand 
that is infested, and a 0 for each stand that is not, 
then XRGS estimates the total number of stands that 
are infested. The estimates that would result from the 
selection of each walk are presented in Table 2. Once 
again, we find that RGS is unbiased, with an expected 
or average estimate of 4 infested stands.

Now suppose that in step (III) we had available a new 
risk map developed by the modeler down the hall. The 
model predicts that incursions are likely to originate 
from the port located near stands E and H. It calculates 
a relative risk for E and H that is 4 times the risk for the 
farthest stands, A and B. All the other stands, which 
occur at intermediate distances, are calculated to have 
a relative risk that is twice that of A and B. If we take the 
selection probability for a walk as proportional to the 
sum of its stands’ relative risk scores from the model, 
and proceed accordingly, the resulting probabilities, 
estimates, and summary statistics will be as presented 
in Table 2. Once again, RGS is unbiased. Again, the 
inclusion of covariate information that turned out to be 
correlated with the attributes of interest did reduce the 
sampling variance.
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FIGURE 1: An example graph in which attributes (presence or 
             absence of an invasive pathogen, indicated by skull 
                        and crossbones) are associated with vertices (patches 
                     of suitable forest habitat). Vertex O is the office, where 
                   sampling trips must begin and end.
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Field example

Study site and organism

Practical application of RGS for invasive species 
inventory can be quite straightforward. As an example, 
we describe here a rapid survey of Polygonum 
cuspidatum invasion within the Mt. Agamenticus-to-
the-Sea conservation area in southern Maine, USA.

The Mt. Agamenticus-to-the-Sea conservation area 
comprises approximately 4800 ha of forested land 
in southern coastal Maine, centered on the low peak 
of Mt. Agamenticus (43.223° N, 70.692° W, elevation 
211 m). The area is heavily forested, with dominant 
tree species including Pinus strobus (L.) (eastern 
white pine), Quercus rubra (L.) (red oak), Acer rubrum 
(L.) (red maple), and Tsuga canadensis (L. Carr.) 
(eastern hemlock). Land ownership is a patchwork 
of local and state government, private conservation 
organisations, and individual private holdings, with 
low density residential development and small-scale 
agriculture as common land uses within a generally 
forested matrix. The area has experienced nearly 
four centuries of European settlement, and much of 
the forest dates from agricultural abandonment in 
the late 19th and early 20th centuries. The area is 
one of the most ecologically diverse in the state of 
Maine, and is home to several locally or globally rare 
species, including Emydoidea blandingii (Holbrook 
1838) (Blanding’s turtle), Williamsonia lintneri (Hagen 
in Selys 1878) (ringed boghaunter dragonfly), and 
Sylvilagus transitionalis (Bangs 1895) (New England 
cottontail rabbit), which is a candidate for listing under 
the US Endangered Species Act. Although sometimes 
called “the largest unfragmented coastal forest 
between Acadia National Park and the New Jersey 
Pine Barrens” (Mt. Agamenticus to the Sea Coalition, 
2009), the area is penetrated by nearly 200 km of 
public roads.

During the early spring of 2009, we undertook a rapid 
assessment of invasion by Polygonum cuspidatum in 
the northern half of the conservation area. Polygonum 
cuspidatum is an alien invasive capable of forming 
dense thickets that displace desirable vegetation in 
pasture and forest systems of the northeastern USA 
(and in many other regions where it is invasive) (Wade 
et al., 1996; Forman & Kesseli, 2003; Weston et al., 
2005) and can also be invasive in riparian areas. 
Rhizome and stem fragments are often spread by 
humans through roadside mowing (Conolly, 1977; 
Brock et al., 1995), and, in our study region, anecdotal 
evidence suggests soil disturbance by snowploughing 
and flooding may also play a role. Once established, 
Japanese knotweed often forms monospecific thickets 
that cast deep shade and can exclude native vegetation 
(Seiger & Merchant, 1997).

Methods and Results

In RGS step (I), we obtained a high-quality map of public 
roads in the study area, labeling each intersection 
and each location where a public road passed out of 
the study area as a vertex. The map included 85 km 
of roads, describable using 48 segments or edges 
connecting 44 vertices.

In step (II), we developed a list of feasible sampling 
walks. Walks were developed by hand using the 
physical map and knowledge of the study area. Walks 
were constrained to begin and end at vertices known 
to have reasonable parking areas nearby, and were 
required to have a length appropriate to sampling on 
foot in a 4-6 hour partial field day. We constructed a list 
containing 41 candidate walks encompassing all the 
edges and vertices of the map.

In step (III), we assigned sampling probabilities 
based on ad hoc subjective scoring. In general, the 
study area is at the frontier of P. cuspidatum invasion. 

TABLE 2: Estimates associated with sampling the graph depicted in Figure 2, when selection probabilities for walk are equal and with 
probability proportional to modelled relative risk.

Walk    Equal Probability  Probability Proportional to Modelled Risk

qj XRGS qj         XRGS

OABC 0.2       2.5 0.1290         2.82
OABD 0.2    0 0.1290         0.00
OACE 0.2    5 0.2258         4.88
OGFE 0.2    5 0.2581         4.00
OGFH 0.2       7.5 0.2581         5.81

E [ XRGS]    4 E [XRGS]         4
CV (%)     63.7 CV (%)       45.2
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We were already aware of two significant invasions 
occurring just outside the study area, and a small 
number of others on frequently travelled roads within 
the study area. We assigned all segments a base 
score of 1 point. Segments already believed to contain  
P. cuspidatum were given an additional 16 points, while 
segments adjacent to those were given an additional 
4 points. The resulting point values were multiplied 
by segment length to arrive at a final score. The final 
scores were used in Equation [6] to give the selection 
probabilities for each walk.

In step (IV), we selected 6 walks without replacement, 
using a spreadsheet to facilitate the selection with 
variable probabilities. The walks did include some 
overlapping segments. We surveyed each walk 
(only surveying the overlapping segments once) and 
recorded the position and linear extent along the road 
of each P. cuspidatum individual or clump encountered.

In step (V), we used Equations [1] through [4] to obtain 
estimates associated with each walk, to calculate the 
mean of those 6 estimates as the best final estimate, 
and to obtain a standard error for the total number 
of clumps and total linear extent of clumps within 
the 85 km road network. The best estimates were  
14.0 ± 5.4 clumps, and 105 ± 56 metres of total 
infestation. Although significant sampling uncertainty 
remains after surveying only 6 walks, the results 
suggest current infestation by P. cuspidatum is less 
than had been feared. However, the small size of 
many clumps, and their distribution among segments, 
suggests that invasion is actively occurring and 
may be characterised by relatively long-distance 
dispersal. This pilot study has provided a useful 
baseline for a more thorough survey of the entire  
200 km road network in the conservation area. We are 
also planning to conduct a 100% census of the study 
area reported here, in support of simulation studies 
that will provide a better understanding of the impacts 
of more sophisticated sources of auxiliary information 
on the sampling process.

Discussion and Conclusions

Randomised graph sampling may be useful for a range 
of survey, monitoring, and surveillance applications in 
forest biosecurity. However, it is not (and is not intended 
to be) a universal solution. A strength of RGS is that it 
respects, and even takes advantage of, constraints on 
movement through the landscape imposed by existing 
road or other transportation networks. However, 
where those constraints do not exist or are not limiting, 
other approaches will probably be simpler and more 
effective. For example, if travel is inexpensive and fast 
and the study area is small, it probably makes sense to 
select sampling locations as a simple random sample.

The examples presented in this overview are highly 
simplified, and will not match any particular application 
in detail. However, they should stimulate further 
discussion, and to illustrate how the elementary 
mechanics of RGS can be implemented. Further 
extensions of the basic RGS framework can capture 
a variety of sampling situations. For example, in 
situations where attributes (such as instances of an 
invasive plant, or infrastructure risks from dead or 
threatened trees) occur along graph edges (such as 
roads or power line corridors), it may not be possible 
or desirable to survey individual edges exhaustively. 
Randomised graph sampling can be used to select 
edges as a first stage of sampling, with points, plots, 
or transects used to sub-sample edges in a second 
stage. Likewise, if attributes are found in stands 
located at the vertices of an RGS graph, it may not be 
possible to conduct a complete census in the selected 
stands. However, RGS can set a first-stage foundation 
for a more complex multistage program involving plots 
for trees, pheromone traps for insects, and so on.

A limitation (and strength) of RGS as developed 
here is its focus on the graph or network itself as the 
subject of sampling. Of course, even in cases where a 
biosecurity threat is found or disperses predominantly 
along a transportation corridor, interior forests may 
also be at risk. One possibility is to use RGS within 
a stratified sampling framework: the landscape can 
be stratified into areas along transportation corridors, 
and interior areas. A similar stratification approach has 
been suggested using other techniques for sampling 
harvest damage to residual trees along and between 
skid trails (Stehman & Davis, 1997). The operational 
efficiency of RGS can be harnessed to sample the more 
easily accessible and connected areas, while other 
approaches can be employed for the more expensive 
and inaccessible interior. Sampling cost should be 
a consideration in the allocation of effort in stratified 
sampling (Thompson, 2002, pp. 120-124). Thus, RGS 
may facilitate the development of more cost-effective 
surveillance efforts even when transportation networks 
are not the sole concern of sampling.

Another strength of RGS is that it allows unbiased 
estimation even though sampling effort is concentrated 
where risk is greatest. From this perspective, it 
conforms to emerging trends in targeted sampling 
for animal biosecurity (Stark et al., 2006; Wells 
et al., 2009). Coulston et al. (2008) have recently 
developed freedom-from-infection ideas from the 
animal biosecurity literature to allow substantiating 
the freedom from infestation or incursion in a forest 
biosecurity context. The approaches developed by 
Coulston et al. (2008) require a valid probability sample 
as a prerequisite. Extension of their techniques to RGS 
would be a valuable contribution.
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