Red needle cast (RNC) epidemiology

Emily McLay, Damien Sellier, David Lane, Catherine Banham, and Stuart Fraser

Why study RNC epidemiology?

- RNC can spread asymptomatically under certain conditions.
- RNC has high inter and intra season variability.
- RNC can progress quickly.
- Often by the time symptoms are visible application of control is ineffective, **Reactive sprays are too late**
- In order to provide decision tools on RNC risk and control we need to **understand the RNC disease cycle**.

Red needle cast is seasonal

Infection linked to temperature and moisture

Infection more common when:

- Low air and soil temperatures, solar radiation and evapotranspiration
- High relative humidity and rainfall

Hood et al 2022 New Zealand Journal of Forestry Science

Seasonal pattern not consistent between years

Central North Island

East Coast North Island

Fraser et al 2020 Forest Pathology

Turning the cycle into a process-based model

- Localised spread in needle tissue under optimal conditions.
- Comparison between resistant and susceptible genotypes.

Basic epidemiological framework

Current work:

Resilient

Impact of temperature

- Optimal range: 10 to 20°C.
- Low temperatures (<5°C) slow disease.
- Temperatures at 23°C and higher limit sporulation.
- Infections are asymptomatic for at least 14 days at 10°C or lower.

Impact of wetness

- Wetness is required for infection and sporulation.
- Infected needles may display symptoms regardless of wetness.
- Sporangia often burst upon desiccation.

Needle wetness is a requirement for disease spread

Calibration of model: Tree level sensor network

Calibration of model: Infection

Calibration of model: Symptoms

Conclusions and next steps

Conclusions

- RNC is strongly driven by climate: high temperatures and low wetness limit disease.
- Quantified climatic drivers of processes within the RNC cycle.
- Sufficient data has been collection to build an infection risk model with climatic inputs.

Next steps

- Build prototype infection risk model.
- Refine and validate model.
- Integrate into decision tool.
- Collect data on spread/survival for model improvement.

Acknowledgements

- Mike Baker, Manulife Investment Management Forest Management
- Kate Richards (Muir) and Edward Pirini, Juken New Zealand
- Resilient Forests Technical Steering Team
- Peter Clinton, Alison Wilson, Ian Hood, Nari Williams, Rob Beresford, Judy Gardner, Kwasi Adusei-Fosu, Rebecca Turner, Sam Davidson, and Chloe Small

Emily McLay Forest Pathologist emily.mclay@scionresearch.com

www.scionresearch.com www.fgr.nz

Tuesday, 13 June 2023

