PROFITABILITY OF RADIATA PINE AFFORESTATION FOR THE EXPORT LOG TRADE — ON SITE INDEX 110

R. FENTON and M. MERLE DICK

Forest Research Institute, New Zealand Forest Service, Rotorua

(Received for publication 22 November 1971)

ABSTRACT

The economics of radiata pine (**Pinus radiata** D. Don) afforestation for the export log trade are evaluated for scrub-covered country of easy topography of site index 110. Twenty thousand eight hundred net of the 25,000 acres gross are initially planted in 11 yr, felling begins in the 16th year, and yields fluctuate between 4 million and 10 million cu ft annually until normality is reached in year 47. The yield for the normal rotation of 20 yr is 8,235 cu ft per acre net of utilisation losses. Silviculture aims at producing two 39-ft logs to a 6-in small end diameter (s.e.d.) by planting at 10×7 ft, thinning (probably to waste) to 150 stems per acre (s.p.a.) at 35-ft top height, and clearfelling at 110 ft.

Interest rates from 3% to 14% are evaluated; 1967 costs are used.

At normality 108 men are employed, 64 of them on logging, giving an average production of 79,300 cu ft per man-year.

The proportions of major costs at 7% interest are: logging, 45%; administration, 16%; social, 14%; establishment, 11%; and tending, 7%.

A net price-on-truck of 20.8c per cu ft is obtained after allowing 8.8c for port handling and 8.7c for a single log haul of 89 miles.

Comprehensive sensitivity analyses are made on the effects of altering costs and returns; the most important effects (expressed for a 7% interest rate) are:

- 1. Differences in yield of 500 cu ft per acre alter land expectation values (LEV) by 16%.
- 2. Differences in realisations of 1c per cu ft alter LEV by 10%.
- 3. Break-even growing costs are 6.4c per cu ft on stump.
- 4. The effect of locating the forest 40 miles nearer the port increases LEV by 36%.

The net LEVs at 7% are \$145 and \$166 when social costs are included and excluded respectively. The corresponding rates of return are 13.3% and 15.7%.

Compared with results from site index 95, growing costs are 17% less; productivity per man increases by 3%, and volume production per acre is 13% higher.

INTRODUCTION

The profitability of radiata pine (*Pinus radiata* D. Don) afforestation for export logs on site indexes 95 and 80 (Lewis, 1954) has been evaluated (Fenton and Tustin, 1972; Fenton and Dick, 1972a). Results from other site indices were required by the National Development Conference, 1969 (Forestry Committee, 1969); and profitability on site index 110 (Lewis, 1954) is calculated here.

Origins of the management and financial data have been given earlier (Fenton and

Tustin, 1972); so these are only briefly considered. Costs, returns, and technical knowledge are as in 1967, except for *Dothistroma* needle blight (*Dothistroma pini* Hulbary) prevention, where the recent advent of the disease justifies use of the latest defined protection.

ASSUMED CHARACTERISTICS OF THE AREA

The area initially evaluated has been described (Fenton and Grainger, 1965). It is assumed that 20,800 out of 25,000 acres gross are planted, initial cover is inflammable scrub, topography is easy to rolling, and the port is 89 miles distant. The previous isolation of frost flats (of 1,600 acres) has been dropped; it is contended there would be few frost flats on sites of this high overall quality. The site index of Tihoi Forest adjoining the Maraetai block is 110 ft, as are extensive areas of northern Kaingaroa and Waiotapu Forests. (Most of Whakarewarewa, Rotoehu, and the Tarawera ash sites in the Bay of Plenty are of still higher site indices.)

TECHNICAL SPECIFICATIONS AND SILVICULTURE

The minimum log small-end diameter inside bark (s.e.d.) required is 6 in.; the minimum ratios of volume by log length are 60%, 39 ft; 35%, 26 ft; 5% or less, 13 and 20 ft. Logs should be reasonably straight (the tolerance of 5% of volume down to a 5.5-in. s.e.d. has been ignored). The mean tree on a 20-yr rotation yields two 39-ft lengths to a 6-in. s.e.d.

Silviculture is:

- 1. Planting sites are cleared and burnt before establishment.
- 2. Initial spacing: trees 7 ft apart in rows 10 ft apart (620 s.p.a.).
- 3. Blanking: 10% replacement in the year following planting is assumed.
- 4. Release cutting: one operation in each of the first and second years after planting. The extra operation, in comparison with the other two sites is assumed to be needed because of extra fertility.
- 5. Thinning (to waste): at 35-ft top height to 150 s.p.a.
- 6. Protection: for *Dothistroma* prevention stands would be aerially inspected each year with closer ground inspection of suspect areas; planted stands would be sprayed when at 8-10 ft, and at 18-25 ft. It is possible a third spray would be required after thinning at 35 ft. Regenerated stands would have an extra spray when trees are 3-4 ft high.
- 7. Clearfelling at normality at 110 ft top height at age 20.
- 8. Second and subsequent rotations are assumed to be replanted on a third of the area; direct seeded from the air on a third; and naturally regenerated on the remaining third. Subsequent treatment for sown and regenerated stands includes spraying against *Dothistroma* and slasher-thinning cum release-cutting at age 2. Sown and regenerated stands are not blanked. Treatment of stands of all origins is the same from about 5 ft in height onwards.

MANAGEMENT

Afforestation is complete in half the rotation, with eventual conversion to normality by more extensive felling of young stands, and retention of some stands beyond normal rotation age. The aim of normality is for convenience in accounting, it does not imply strict normality is necessary or desirable. In practice, fluctuating yields would be acceptable. The annual areas of planting, silvicultural operations, and felling are given in Table 1. Felling begins in the 16th year (85-ft top height) and after a gradual build-up to 1,600 acres annually, finally stabilises at 1,040 acres a year.

	Plan	ting			Release	Cutting		Thinning	Clea	arfell	ling
Year	Machine	Hand	Sowing	Blanking	1	2	Slasher Thinning	to. Waste	Area acres	Age yr	Year Planted
1	1,000										(α,β)
2	1,600			1,000	1,000						
3	2,000			1,600	1,600	1,000					
- 4	2,000			2,000	2,000	1,600					
5	2,000			2,000	2,000	∂,000					
6	2,000			2,000	2,000	2,000					
7	1,000	1,000		2,000	2,000	2,000		1,000			÷ .
8		2,000		2,000	2,000	2,000		1,600			
9		2,000		2,000	2,000	2,000		2,000			
10		2,000		2,000	2,000	2,000		2,000			
11		2,200		2,000	2,000	2,000		2,000			
12				2,200	2,200	.2,000		2,000			
13						2,200		2,000			
14								2,000			
15		0.00	205					2,000			
16		200	200					2,000	600	15	1
17		333	333	200	200			2,200	400	16	1 -
									600	15	·
18		466	466	333	333	200	400		1,000	. 16	2
									400	15	. 3
19		466	466	466	466	333	666		1,400	16	3
20		466	466	466	466	466	932		200	. 17	3
~		166	155	150	100	100	070		1,200	16	4
21		466	466	466	466	466	932		800	17	4
		E 2 -		100	100		070	1000	600	16	5
22		533	533	466	466	466	932	600	1,400	17	5
									200	16	6
23		533	533	533	533	466	932	1,000	1,600	17	6
24		533	533	533	533	533	1,066	1,400	200	18	6
25		400	400	F77	- 77	F 77	4.000	4 400	1,400	17	7
25		400	400	533	533	533	1,066	1,400	600	18	7
20		777	777	100	100	677	1.000	1 100	.,600	17	8
26		333 346P	333 746 D	400	400	533 400	1,066 800	1,400	1,000	18	8 8
27		946P	346P	333	333	400	800	1,400	400	19	
28				346P	346P	333	666	1,600	. 640 -	18 19	9 9
29)40r)40r	346P	692P	1,600	1,040 320	20	9
29 ·						J401	0921	1,000	720	19	10
30								1,600	1,040	20	10
31								1,200	240	21	10
1								1,200	800	20	11
32								1 000	1,040	21	11
33								1,000 1,040P	360	21	11
55									600	17	16
									80	16	17
34								A	920	17	17
74									120	16	18
35									1,040	17	18
36 36									240	18	18
0	E.,	.0							800	17	1.9
									600	18	19

TABLE 1-Management plan: areas of annual operations (acres)

	Plant	ing			Release (Cutting		Thinning	Clearfelling			
Year	Machine	Hand	Sowing	Blanking	1	2	Slasher Thinning	to Waste	Area	Age	Year Planted	
37									440	17	20	
38									960	18	20	
									80	17	21	
39									1,040	18	21	
40									280	19	21	
									760	18	22	
41									840	19	22	
									200	18	23	
42									1,040	19	23	
43									360	20	23	
									360	20	23	
44									680	19	24	
									120	19	25	
45									1,040	20	25	
46									40	21	25	
									1,000	20	26	
47									1,040P	20	27	

TABLE 1 (continued)

Yield predictions are given elsewhere (Appendix 2 of Fenton and Tustin, 1972); summaries are included here in Appendix 1. The net volume logged at age 20 (normality) is 8,235 cu ft per acre.

LABOUR REQUIREMENTS: DIRECT GROWING COSTS

The direct labour content in establishing and growing the forest is given in Table 2. Logging yields and labour requirements are given in Table 3. Overall supervisory staff, and indirect labour are scheduled in Table 4; total manpower required is summarised in Table 5.

The costs of production are considered in four main groups: direct costs of growing, immediately below, following by protection costs, social costs, and indirect costs.

The labour content and costs of forest operations are as given elsewhere (Fenton and Tustin, 1972). These direct costs comprise wages and production bonus; compensation and holiday pay; direct stores charges; and transport and machinery hire. Supervision and indirect costs are charged separately. The costs of land preparation needed are listed in Appendix 2. Table 6 lists the logging equipment needed (based on Appendix 4 of Fenton and Tustin, 1972).

PROTECTION

This comprises fire and *Dothistroma* prevention and control; and some minor items. Fire prevention costs are summarised in Table 7, and *Dothistroma* costs elsewhere (Fenton and Tustin, 1972). Briefly, for *Dothistroma* protection, crops are sprayed two or three times by age 14; regenerated crops receive an extra spray by height 5 ft, spraying frequency depending on aerial and ground assessment.

	Plant	ing		Release	Cutting	01	Min i sum i so si	
Year	Machine	Hand	Blanking	1 man-	2 -days	Slasher Thinning	Thinning to Waste	Total man-yr
1	155							1
2	248		300	670				5
3	310		480	1,072	670			11
4	310		600	1,340	1,072			14
5	310		600	1,340	1,340			15
6	310		600	1,340	1,340			15
7	310	625	600	1,340	1,340		1,500	21
8	155	1,250	600	1,340	1,340		2,400	27
9		1,250	600	1,340	1,340		3,000	32
10		1,375	600	1,340	1,340		3,000	32
11			600	1,340	1,340		3,000	32
12			660	1,474	1,340		3,000	27
13					1,474		3,000	19
14							3,000	13
15							3,000	13
16		125					3,000	13
17		210	60	138			3,300	16
18		292	100	223	138	266		5
19		292	140	312	223	446		6
20		292	140	312	312	624		7
21		292	140	312	312	624		7
22		333	140	312	312	624	900	11
23		333	160	357	312	624	1,500	14
24		333	160	357	357	714	2,100	17
25		250	160	357	357	714	2,100	17
26		208	120	268	357	714	2,100	16
27		216P	100	223	268	536	2,100	15
28			104P	2 3 2 P	223	446	2,400	15
29					2 3 2 P	463P	2,400	15
30							2,400	15
31							1,800	13
32							1,500	12
33							1,560P	12P

TABLE 2-Manpower for forest operations

P = in perpetuity

SOCIAL COSTS

These comprise roading, accommodation, and minor items. Table 8 shows the items charged in roading (and minor items). The schedule of housing and other accommodation is given in Table 9; it has been assumed that 10 men can be recruited locally and they have not been housed on the forest. The costs of running the camp are based on charges of \$122 per man per year.

Fenton & Dick - Site Index 110

	Year	1	2	3	4-5	6–8	9–14	15	16	17-18	19	20-24	25-26	27
STAFF														
Officer in charge		1 P												1
Forester			1 P											1
Forest ranger)			1P				1 P		1 P					3
Forest foreman)														μ.
Clerk		1 P												1
Stores clerk							1P							1
Roading														
Officer in charge		1 P												1
Men		2 P						4					-3	3
Logging														
Officer in charge								1 P						1
Forest ranger)									1 P		1 P	1	-1	2
Forest foreman)											11	•	-,	-
Clerk									1 P					1
Other Labour														
Fleet														
Mechanic		1 P					1 P		2 P					4
Driver		1 P					1 P		1 P					3
Others														
Tractor-driver		1 P												1
Fire L/O				1 <i>P</i>										1
Camp attendant										1 P				1
Carpenter)						1 P					1 P			2
Painter)						12								-
Fire stores				1P										1
HQ gangs		1 P			1 P		1 P							3
Tool maintenance		1 P												1
Total		10	12	14	15	.16	21	26	32	33	35	36	32	3 2

TABLE 3-Staff and indirect labour schedule

P = in perpetuity

INDIRECT COSTS

Staff salaries are given in Table 10; external overheads have been taken as 60% of these amounts. A forest building programme is outlined in Table 11; vehicles and stores are listed in Table 12; net charges for "services and general" costs are given in Table 13. (Compared with the lower site indexes these have been increased, or charged earlier.)

Depreciation is charged by allowing the cost of the asset concerned at the end of its service life. The service lives are as given earlier (Fenton and Tustin, 1972).

General administration costs have been charged on a per acre basis, and are included in Table 13.

RETURNS

Returns are based on the export free-on-board price at port of \$4.25 per 106 "Japanese Haakon Dahl" (JHD) units. Log cartage costs for a 178-mile round trip

Year	Age Class	Net Vol. per Acre	Total Net Volume	Man-hour Production	Total Labour
	yr	cu ft	00 cu ft	cu ft	man-yr
16	15	4,583	27,498	65	25.2
17	16	5,310	21,240	75	
	15	4,583	27,498	65	42.0
18	16	5,310	53,100	75	
	15	4,583	18,332	65	59.0
19	16	5,310	74,340	75	59.0
20	17	5,616	11,320	80	
	16	5,310	63,720	75	58.9
21	17	5,616	44,928	80	
	16	5,310	31,860	75	58.7
22	17	5,616	78,624	80	
	16	5,310	10,620	75	66.9
23	17	5,616	89,856	80	66.9
24	18	6,318	12,636	80	
	17	5,616	78,624	80	67.9
25	18	6,318	37,908	80	
	17	5,616	33,696	80	53.3
26	18	6,318	63,180	80	47.0
27	19	6,993	27,972	80	
	18	6,318	40,435	80	50.3
28	19	6,993	72,727	80	54.1
29	20	8,235	26,352	80	
	19	6,993	50,350	80	57.1
30	20	8,235	85,644	80	63.7
31	21	9,342	22 ,42 1	80	
	20	8,235	65,880	80	65.7
32	21	9,342	97,157	80	72.3
33	22	10,584	38,102	80	
	17	5,616	33,696	80	
	16	5,310	4,248	75	53.4
34	17	5,616	51,667	80	
	16	5,310	6,372	75	41.8
35	17	5,616	58,406	80	48.5
36	18	6,318	15,163	80	
aç	17	5,616	44,928	80	44.6
37	18	6,318	37,908	80	
	17	5,616	24,710	80	46.6
38	18	6,318	60,653	80	
	17	5,616	4,493	80	45.1

TABLE 4-Volume yields and logging labour

Year	Age Class	Net Vol. per Acre	Total Net Volume	Man-hour Production	Total Labour
	yr	cu ft	00 au ft	cu ft	man-yr
39	18	6,318	65,707	80	52.2
40	19	6,993	19,580	. 80 .	
	18	6,318	48,017	80	50.3
41	19	6,993	58,741	80	
	18	6,318	12,636	80	53.1
42	19	6,993	72,727	80	54.1
43	20	8,235	29,646	80	
	19	6,993	47,552	80	57.4
44	20 、	8,235	75,762	80	
	19`	6,993	8,392	80	62.6
45	20	8,235	85,644	80	63.7
46	21	9,342	3,737	80	
	20	8,235	82,350	80	64.0
47	20	8,235	85,644	° 80 °	63.7

TABLE 4 (continued)

are 8.7c per cu ft. Export costs and returns are given elsewhere (Fenton and Tustin, 1972); and the price loaded-on-truck at the forest is 20.8c per cu ft.

House rents of \$3 per week for 50 weeks a year, and hut rents of \$0.10 per week for 45 weeks a year comprise social returns.

PROFIT CALCULATION: RESULTS

Costs and returns have been discounted to the year of origin of the forest; both are charged at the mid-point of the year in which they occur.

The land expectation value (LEV) equivalents — or the present net worth per acre — for each individual cost-and-return element was calculated for interest rates of 3% to 14%. Costs are grouped by major classes in Table 14. The net LEVs — the prices which could be paid for the land to break-even at the various interest rates — are also given in Table 14 and graphed in Fig. 1. The internal rates of return, or the rates of interest generated by the project are found from Fig. 1. They are:

(a) including social costs -13.3%

(b) excluding social costs — 15.7% (by extrapolation).

The relative importance of the major classes of costs to loaded-on-truck is shown in Fig. 2, and the proportion of the major growing and utilisation costs in Fig. 3.

The break-even growing costs are given in Table 15; these are the forest costs of production per net unit of wood (viz., the volume which is finally extracted and loaded). They are shown graphically in Fig. 4.

The effect of forest location on profitability is given in Table 16, and illustrated in Figs. 5 and 6.

The effects of differences in volume yield are shown in Table 17 as the LEV equivalent of logged volume per acre; they are illustrated in Fig. 7.

Year	Forest*	Staff and Indirect+	Logging [†]	Tota
1	1	10		11
2	5	12		17
3	11	14		25
4	14	15		29
5	15	15		30
6	15	16		31
7	21	16		37
8	27	16		43
9	32 [.]	21		53
10	3 2	21		53
11	32	21		53
12	27	21		48
13	19	21		40
14	13	21		34
15	13	26		39
16	13	32	25	70
17	16	33	42	91
18	5	33	59	97
19	6	35	59	100
20	7	36	59	102
21	7	36	59	102
22	11	36	67	114
23	14	36	67	117
24	17	36	68	121
25	17	32	54	103
26	16	32	47	95
27	15	32P	51	98
28	15		54	101
29	15		57	104
30	15		64	111
31	13		66	111
32	12P		73	117
33			54	98
34			42	86
35			49	93
36			45	89
37			47	91
38			45	89
39			52	96
40			51	95
41			53	97
42			54	98
43			58	102
44			63	107
45			64P	1081
	Table 2	+	From Table 4	

TABLE 5-Total labour in man-years

The effects of changes (reductions) in net returns are given in Table 18, and graphed in Fig. 8.

P = in perpetuity

The labour needed, by number and skills, is given in Tables 2 to 5.

+ From Table 3

DISCUSSION OF RESULTS: CONCLUSIONS

Comparative results from afforesting the three site indices are fully considered in a further paper (Fenton and Dick, 1972b); hence comment here is restricted to a few

**	- 4
NIA	
LNU.	1

Fenton & Dick — Site Index 110 TABLE 6—Schedule of logging equipment

Year	דז D/7	racto D,		Arc	hes	Loa	aders		ang ucks	Pov Sa	er WS	F.S.U.* Misc.	
	т	т	+/-	Т	+/-	Т	+/-	Т	+/-	т	+/-	Т	
15	1											\$4,600 †	
												2 tip trucks at \$4,500	0 each
												1 Trekka truck at \$1,7	70
16		3	3	3	3	2	2	1	1	12	12	\$2,500 [†]	
17	2	6	3	5	2	3	1	2	1	24	12	1	
18	P	8	2	8	3	4	1	3	1	3 2	8	\$2,500 [‡]	
20		9	1							36	4		
22		10	1	10	2	5	1	4	1	40	4	2 P	
25		8	-2	8	-2	4	-1	3	-1	32	-8		
28		9	1							36	4		
30		10	1	9	1	.5	1	4	1	40	4		
32		11	1	10	1					44	4		
33.		9	-2	8	-2	4	-1			3 6	-8		
34		7	-2	6	-2	3	-1	3	-1	28	-8	*F.S.U. = Field Service Unit	
36				7	-1							+ Miscellaneous equipment	
38		8	1			4	1			32	4	+ Stores	
			•			т	•			2	7	T = total	
41				8	1							+/- = addition or deletion	
43		9	1	9	1			4	1	36	4	P = in perpetuity	
44		10	1	P		5	1	Ρ		40	4		
		Ρ				P				Р			

TABLE 7—Fire protection costs

Item	Year	Cost
Firebreaks - preparation	1–9	\$433 p.a.
Fencing	1-5	\$500 p.a.
Equipment - Radio	3	\$1,200
Fire engine	3	\$10,200
Miscellaneous equipment	3	\$3,400
Fire pumps (2)	4	\$1,200
Fire tanker	5	\$3,600
Telephone	3	\$1,225
Buildings - Lookout		
Capital	3	\$5,500
Maintenance	4 onwards	1 4%*
Depreciation		65-year life
Garage and store		
Capital	5	\$4,400
Maintenance	6 onwards	1 4 %*
Depreciation		
Annual charges are roughly proportion	nal to the are	a planted
\$0.81 per ac up to 7,500	ac	
\$0.53 per ac from 7,500	to 13,000 ac	
\$0.46 per ac above 13,00	0 ac	

* Included in annual charges

			ROADIN	G					MISCELL	ANEOUS	
			Mainter		Equir	oment		Share of Services			
Year	Formation	Metalling	Forest Area	Cost/ acre	Item	. Co	st	Water Supply*	Site Preparation	Acreage Cost/ acre	Services N.E.I.‡
	\$		acres	\$			6	\$	\$	\$	\$
1	8,800		1,000	0.30	tip truck $\left(\frac{1}{2}\right)$) 2,	250	2,500	1,000	1,000 0.215	3,000
2	8,800		2,600	0.30				2,500		2,600 0.19	
3	8,800		4,600	0.30				1,100	1,200	4,600 0.16	6,000
4	8,800		6,600	0.30						6,600 0.13	
5	8,800		8,600	0.30	Grader 10-cwt truck		000 [°] 000			8,600 0.11	
6	8,800		10,600	0.30						10,600 0.088	
7	8,800		12,600	0.30				•		12,600 0.075	3,000
8	8,800		14,600	0.30					•	14,600 0.0 6 75	
9	8,800		16,600	0.30						16,600 0.0625	3,700
10	8,800		18,600	0.30						18,600 0.06	
.11	8,800		20,800	0.30P	tip truck $\left(\frac{1}{2}\right)$) 2,	250	х.,		20,800 0.06P	
12	8,800										
15		\$9,600 per year up to and including year 24		e							2 4 -

TABLE 8—Social costs, excluding housing

* These amounts are half of the total costs; an equal amount is allotted to 'Capital Works' - Table 11.

+ These amounts are half of the 'Services' component of the repairs and maintenance charge - Table 13.

+ N.E.I. = not elsewhere indicated.

P = in perpetuity

110

New Zealand Journal of Forestry Science

Year	Number to	Нои	ses		Н	luts	Other
Iear	Be Accom.	New	Total		New	Total	other
1	1	1	1		-	-	House units costs
2	7	6	7				\$8,400 each;
3	14	7	14				65 - yr life;
4	18	4	18				$1\frac{1}{4}$ % annual
5	19	1	19				repairs and
6	20	1	20				maintenance
7	26	6	26				charge
8	32	6	32				
9	42	10	42				
10	42	-	42				
11	42	4	43P				
12	37						
15		Cookhouse		\$17,000			1 1 % annual
		Caterer's hou	se	\$6,700			repairs and
		Ablution block	k	\$5,600			maintenance
							charge.
16	59				16	16	Hut unit costs
17	80				21	37	\$700 each;
18	86	Cookhouse exte	ension	\$10,700	6	43	20-yr life;
		Ablution block	k extn	\$3,300			
19	91				3	48	
20	91				2	48	
21	91					48	
22	103				12	60	
23	106				3	63	
24	110				4	67	
	(maximum)						
33					-10	57	Credit for huts

TABLE 9-Forest accommodation requirements

salient points. When results are compared with those from site index 95:

- 1. The 15% greater annual volume increment requires only 11% more labour and overall productivity per man increases by 3%. This is due largely to more efficient spread of supervisory staff: it could be argued that they ought to be paid more for greater responsibilities.
- 2. The higher increment reduces the rotation by 13%; hence greater volumes are available earlier throughout. Much the same initial investment in labour, treestock, and capital items results in 13% earlier yields on the higher quality site; the implications for national planning are considerable. The discussion on planting programmes summarised in the Forestry Sector Report, Forestry

							Year					
Category	1	2	3	4-6	7	8	9-14	15	16–18	19	20 - 24	25+
. Forest Staff												
Officer in charge	3,410	3,410	3,410	3,550	3,550	3,750	3,750	3 , 750	,900	,900	,900	,900
Forester		2,570	2,570	2,810	2,810	2,810	2,810	2,810	3,170	3,170	3,710	3,710
Foreman		2,250	2,250	2,250	2,360	2,360	2,360	2,360	4,160	4,610	4,610	4,610
Ranger							2,570	2,690	2,690	2,690	2,690	2,690
Roading ranger	2,250	2,250	2,250	2,360	2,570	2,570	2,570	2,570	2,690	2,690	2,690	2,690
Clerk	2,230	2,230	2,230	2,450	2,450	2,450	2,450	2,690	2,690	2,690	2,690	2,690
Stores clerk							2,450	2,450	2,450	2,450	2,450	2,450
Total (A)	7,890	12,710	12,820	13,510	13,740	13,940	18 , 960	19,320	22,200	22,200	22,200	22,200
. Logging Staff												
Officer in charge								3,410	3,410	3,410	3,410	3,410
Foreman									2,360	2,360	2,360	2,360
Ranger										2,690	5,380	2,690
Clerk									2,230	2,230	2,230	2,230
Total (B)								3,410	8,000	10,690	13,380	10,690
Total (A + B)								22 , 730	30 , 200	32 , 890	35 , 580	32,89

TABLE 10—Salaries

No. 1

Fenton & Dick — Site Index 110 TABLE 11—Capital works required

Year	Item	Cost \$
1	Office and store	7,750
	Petrol store	3,300
	Telephone line	1,225*
	Water supply	2,500 †
2	Garage/workshop	16,000
	Water supply	2,500 †
3	Water supply	1,100 †
15	Office extension	7,750
	Garage extension	16,000

*An equal amount is charged to protection

+An equal amount is charged to social costs

Other services N.E.I. charged to social costs; fencing has been charged to forest protection.

TABLE 12-Vehicles and stores

Year	No.	Description	Cost(\$)	Charged to
1	1	10-cwt truck*	2,000	Forest
	2	Gang trucks	5,000 each	Forest
	1	Tip truck	4,500	Forest $(\frac{1}{2})$
				Roading $(\frac{1}{2})$
	1	HD6 tractor	13,250	Forest
3	1	Office car*	2,500	Forest
		Class 'A' stores	1,100	Forest
		Consumable stores	1,150	Forest
5	1	10-cwt truck*	2,000	Roading
	1	Grader	20,000	Roading
		Consumable stores	1,725	Forest
8	1	10-cwt truck	2,000	Forest
		Class 'A' stores	5,000	Forest
10		Consumable stores	2,875	Forest
11	1	Tip truck	4,500	Forest $\left(\frac{1}{2}\right)$
				Roading $(\frac{1}{2})$
13		Class 'A' stores	5,000	Forest
15		Class 'A' stores	3,500	Forest
		Miscellaneous plant and equipment	9,200	Forest $(\frac{1}{2})$ Logging $(\frac{1}{2})$
	1	Trekka truck*	1,770	Logging
	3	10-owt trucks*	2,000 each	Forest
19		Consumable stores	2,900	Forest
22		Consumable stores	2,900	Forest

* Annual charges, excluding depreciation, on these vehicles are \$755 per year

Year	Acreage	'General' Charge per acre, \$	Total S. and G. charge, \$*	General Administration Costs per acre, \$
1	1,000	0.86	1.075	1.152
2	2,600	0.76	0.95	1.152
3	4,600	0.64	0.80	0.576
4	6,600	0.53	0.66	0.576
5	8,600	0.44	0.55	0.576
6	10,600	0.36	0.39	0.408
7	12,600	0.30	0.375	0.408
8	14,600	0.27	0.34	0.408
9	16,600	0.25	0.31	0.348
10	18,600	0.24	0.30	0.348
11	20,800	0.24	0.30	0.348

TABLE 13—Services and general assets, repairs and maintenance, and administration costs

* Total = services and general repairs and maintenance.

Services = $\frac{1}{2}$ of the general charge, but half of the 'Service' total is already debited to Social accounts (in Table 8).

Committee, 1969) of the National Development Conference states: "[data] . . . show arrested growth in the period 1980-95. This arises as a result of small plantings in the 1940s and 1950s. The main impact of the recommended programme is on the wood supply available after the year 2000." Clearly the sooner the wood is available, the better.

- 3. The more concentrated volume reduces overall log hauls, though this is not reflected in the profits. To produce the same volume from a lower site quality, a greater area, and hence haul, would be needed.
- 4. Reduced degrees of biological, physical, and marketing risk are incurred in a shorter rotation, but cannot be quantified on present knowledge. The area of annual re-establishment of second, and subsequent rotations is, however, greater for short rotation crops, and any delays in restocking are proportionally more significant; hence managerial risks are higher.
- 5. The shorter rotation increases the relative importance of utilisation costs. Results are still very sensitive to changes in realisation.
- 6. Profitability is greatly increased, the LEV at 7% is over 50% higher, and the cost of production per cu ft is 17% lower. The internal rates of return generated (13 1/3% and 15 1/2% respectively including and excluding social costs) are high for a long term project such as forestry.

Fenton & Dick - Site Index 110

TABLE 14-Costs, returns, and ne

<u></u>				1	EV at In	terest
	3	4	5	6	7	8
					\$ per	acre
FOREST COSTS						
Direct						
Land clearing	3.59	3.52	3.44	3.35	3.31	3.2
Establishment	29.73	24.49	21.14	18.74	16.90	15.4
Tending	34.41	25.05	19.40	15.62	12.92	10.8
Total Direct	67.73	53.06	43.98	37.71	33.13	29.5
Protection						
Dothistroma	14.05	10.54	8,38	6.91	5.84	5.0
Fire	14.29	10.50	8.24	6.75	5.70	4.9
Total Protection	28.34	21.04	16.62	13.66	11.54	9.9
Administration						
Salaries and external overheads	58.01	42.14	32.79	26.62	22.30	19.1
Buildings, stores	3.87	3.18	2.76	2.46	2.24	2.0
Vehicles	11.56	8.43	6.55	5.33	4.48	3.8
Total Administration	73.44	53.75	42.10	34.41	29.02	25.0
Total Growing Costs	169.51	127.85	102.70	85.78	73.69	64.5
Logging						
Salaries and external overheads	14.37	9.30	6.43	4.64	3.46	2.6
Machinery	92.25	60.70	42.77	31.51	23.91	18.5
Extraction	231.82	146.82	99.76	70.95	52.07	39.1
Total logging	338.44	216.82	148.96	107.10	79.44	60.3
Total Forest Costs	507.95	344.67	251.66	192.88	153.13	124.8
Social						
Roading	16.87	13.19	10.85	9.22	8.03	7.08
Accommodation	31.25	24.53	20.57	17.96	16.04	14.58
Total Social Cost	48.12	37.72	31.42	27.18	24.07	21.60
Total Cost	556.07	382.39	283.08	220.06	177.20	146.54
RETURNS						
Logs	1,381.20	881.33	603.37	432.19	319.52	241.80
Rent (social)	7.39	5.25	4.00	3.18	2.61	2.19
NET VALUES						
Excluding Social Items	873.25	536.66	351.71	239.31	166.39	116.92
Including Social Items	832.52	504.19	324.29	215.31	144.93	97.45

No. 1

Interest	LEV equivalent	Break-Even Growing Cost					
rate %	of 1c per cu ft \$ per acre	Including Social Costs c per cu ft	Excluding Social Costs c per cu ft				
3	66.404	3.277	2,552				
4	.42.372	3.907	3.017				
5	29.008	4.623	3.540				
6	20.779	5.436	4.128				
7	15.362	6.363	4.796				
8	11.625	7.415	5.551				
.9	8.956	8.615	6.406				
10	7.000	9.967	7.365				
11	5.534	11.532	8.478				
12	4.419	13.285	9.712				
13	3.558	15.295	11.124				
14	2.885	17.545	12.703				

TABLE 15-Break-even growing costs

APPENDIX 1

VOLUME YIELDS

The stand data are summarised in Table 19. The origin of the yields is given in Appendix 2 of Fenton and Tustin 1972. The Japanese log trade requires a minimum of 60% of volume in 39-ft lengths; 35% in 26-ft; and 5% in 13- and 20-ft lengths. The log yield for mean trees is shown in Table 20. The net yield has been calculated by reducing the gross yield by approximately 10%. The mortality trend in such stands is difficult to forecast (only a minor area reaches age 22); data on stem-breakage points are not available; and more data to predict yields with greater accuracy are desirable.

APPENDIX 2

LAND PREPARATION

The unit costs are the same as in the original model. The area burnt in year 4 has been reduced as more of the forest has been planted before this. For a similar reason, the felling, burning, and bulldozing of the remaining bush has been advanced. The schedule is given in Table 21.

	Distance of Forest	Log Haul Cost					Int	erest F	late %					
	from Port miles	c per cu ft	3	4	5	6	7	8	9	10	11	12	13	14
						Ch	ange in	LEV (\$	per ac	re)				
Positive	18–20	3.21	393.02	250.84	171.70	122.95	90:85	68.74	52.92	41.40	32.69	26.11	21.05	17.05
	21-30	4.05	336.87	215.01	147.17	105:39	77.87	58.92	45.36	35.48	28.02	22.38	18.04	14.6
	31-40	4.89	280.73	179.17	122.64	87.82	64:89	49.10	37.80	29.57	23.35	18.65	15.04	12.10
	41-50	5.73	224.80	143.34	98.11	70.26	51.91	39.28	30.34	23.65	18.68	14.92	12.03	9.7
	51-60	6.57	168.44	107:50	73.58	52 .6 9	38.93	29.46	22.68	17.74	14.01	11.19	9.02	7.3
	61-70	7.41	112:29	71.67	49.06	35.13	25:96	19.64	15:12	11.83	9.34	7.46	6.01	4.8
	71-80	8.25	56.15	35.83	24.53	17.56	12.98	9.82	7.56	5.91	4.67	3.73	3.01	2.4
	81-90	9.09	0	0	• 🖸	0	0	0	0	0	0	0	0	0
Negative	91–100	9.93	56.15 and sc	35.83 on in p	24.53 arallel	17.56 series	12.98	9.82	7.56	5.91	4.67	3.73	3.01	2.4
							Net LE	W (\$ pe	er acre)	×				
	18-20		1,223	753	495	337	235	166	117	82	56	37	23	1
	21-30		1,167	718	471	320	222	156	109	76	52	33	20	1
	31-40		1,111	682	446	303	209	146	102	70	47	30	17	
	41-50		1,056	647	422	285	197	136	94	64	42	26	14	
	51-60		1,000	611	397	268	184	127	87	58	38	22	11	
	61-70		944	575	373	250	171	117	79	53	33	19	8	-1.
	71-80		888	540	349	233	158	107	72	47	28	15	5	-
	81-90		832	504	324	215	145	97	64	41	24	11	2	_

TABLE 16-Effect of location on profitability

* Including social costs and returns

Fenton & Dick - Site Index 110

No. 1

117

Vol.	2
, OI.	<u> </u>

cu ft/ac	Interest Rate %											
less	3	4	5	6	7	8	9	10	11	12	13	14
	A. Ret	urns, LEV	reducti	on								
500	98.84	65.38	46.12	33.86	25.56	19.70	15.40	12.40	9.76	7.88	6.40	5.23
1000	197.68	130.77	92.24	67.73	51.13	39.39	30.81	24.81	19.52	15.76	12.80	10.47
1500	296.52	196.15	138.36	101.59	76.69	59.08	46.21	37.21	29.28	23.64	19.20	15.70
	B. Net	: LEV's b	ecomes									
500	733.68	438.81	278.17	181.45	119.37	77.75	48.91	28.39	13.91	3.30	-4.53	-10.22
1000	634.84	373.42	232.05	147.58	93.80	58.06	33.50	15.98	15	-4.58	-10.93	-15.46
1500	536.00	308.04	185.93	113.72	68.24	39.39	18.10	3.58	-5.61	-12.46	-17.33	-20.69
	C. Net	: LEV's i	f loggin	g cost	is prop	ortiona	lly red	uced*				
500	747	447	292	184	122	79	50	30	14	3	-4	-10
1000	661	389	242	155	99	61	36	18	5	-4	-10	-15
1500	575	332	201	124	76	45	22	7	-3.7	-11	-17	-20

TABLE 17-Effect of lower yields on total returns; net LEV

* Including social costs and returns, when logging costs are proportionately reduced.

TABLE 18-Effect of changes in returns on profitability

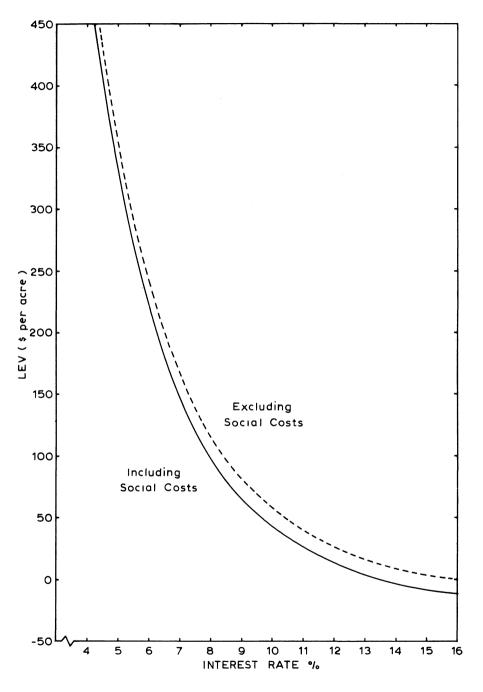
Price loaded on				Interest Rate %								
truck at forest c per cu ft	3	4	5	6	7	8	9	10	11	12	13	14
A.			V	Value c	of logs	- LEV	in \$	per ac	ere			
20.8	1,381	881	603	432	320	242	186	146	115	92	74	60
19.8 (1c less)	1,315	839	574	411	304	230	177	139	110	88	70	57
10.8 (10c less)	717	457	313	224	166	126	97	76	60	48	38	31
2 .8 (18 c less)	186	119	81	58	43	33	25	20	15	12	10	8
В.					Net LE	W in \$	per a	cre*				
20.8	833	504	324	215	145	97	64	41	24	11	2	- 5
19.8 (1c less)	767	462	295	194	130	85	55	34	19	7	- 2	-8
10.8 (10c less)	169	80	34	7	-9	- 19	- 25	- 29	-31	-33	- 34	- 34
2.8 (18c less)	- 362	- 258	-198	- 159	- 132	-112	-97	- 85	-76	- 69	- 62	- 57

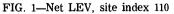
*Including social costs and returns

TABLE 19—Volume summary

Rotation Age	Top Height	Basal Area per acre	Mean d.b.h.	Total Volume	Net yield
yr	ft	sq ft	in.	cu ft	cu ft
15	85	178	14.8	5,100	4,583
16	90	195	15.4	5,800	5,310
17	95	211	16.1	6,500	5,616
18	100	228	16.8	7,500	6,318
19	105	245	17.4	8,500	6,993
20	110	261	17.9	9,400	8,235
21	116	281	18.6	10,600	9,342
22	122	301	19.2	11,900	10,584

Stand Age	Top Height	Approximate Height 6-in. Top	Log	Lengths	Yielded			
yr yr	ft	ft	ft					
15	85	57	40		13			
16	90	62	40		20			
17	95	67	40	26				
18	100	72	40	26				
19	105	77	40	26				
20	110	82	40(2)				
21	116	87	40	26	20			
22	122	95	40	26(2)				


TABLE 20-Log lengths from mean trees


TABLE 21—Land preparation schedule

Year	Method	Area acres	Rate/Acre \$	Cost \$
1	Cut heavy scrub	1,500	17	25,500
	Crush heavy scrub	1,500	6	9,000
	Crush light scrub	6,000	4	24,000
	Overall burn	24,000	0.06	1,440
4	Overall burn	14,000	0.5	7,000
5-10	Annual of bush	2,000 p.a.	0.5	6,000
6	Felling of bush	500	32	16,000
7	Burn of bush	500	1	500
11	Bulldozing bush slash	500	16	8,000

REFERENCES

- FENTON, R., and DICK, M. Merle. 1972a: Profitability of radiata pine afforestation for the export log trade — on site index 80. New Zealand Journal of Forestry Science 2 (1) (this issue):
- ------ 1972b: Significance of the profit studies of afforestation for the export log trade. New Zealand Journal of Forestry Science 2 (1) (this issue): 144-64.
- FENTON, R., and GRAINGER, M. B. 1965: Economic results from afforestation of the Maraetai blocks. New Zealand Forest Service, Forest Research Institute Silviculture Branch Report 31 (unpublished).
- FENTON, R., and TUSTIN, J. R. 1972: Profitability of radiata pine afforestation for the export log trade — on site index 95. New Zealand Journal of Forestry Science 2 (1) (this issue): 7-68.
- LEWIS, E. R. 1954: Yield of unthinned Pinus radiata in New Zealand. New Zealand Forest Service, Forest Research Institute Research Note 1 (10).
- FORESTRY COMMITTEE, 1969: "Report of the Forestry Committee to the Second Plenary Session of the National Development Conference" (NDC 5). Government Printer, Wellington.

Vol. 2

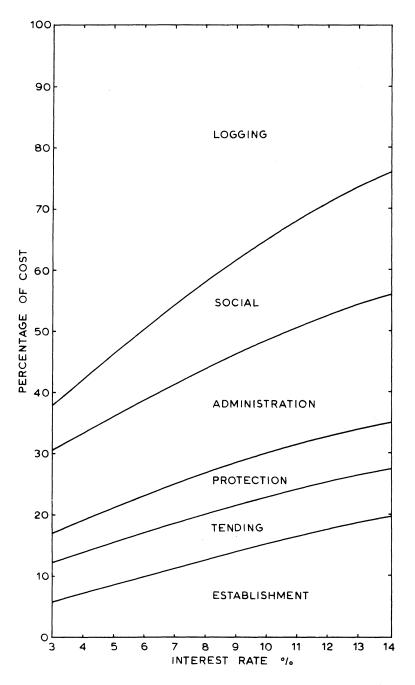


FIG. 2—Relative importance of forest costs: percentage of cost loaded-on-truck.

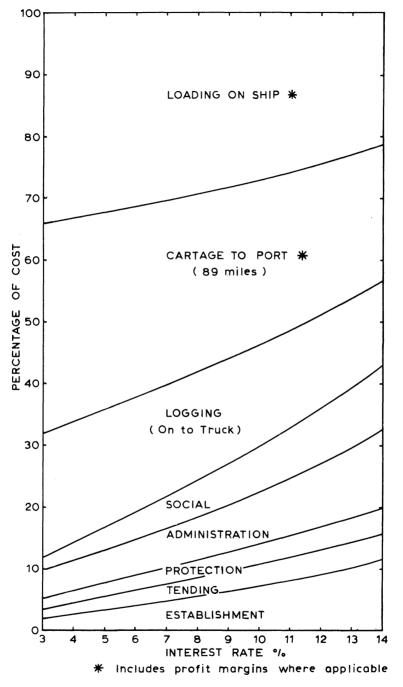
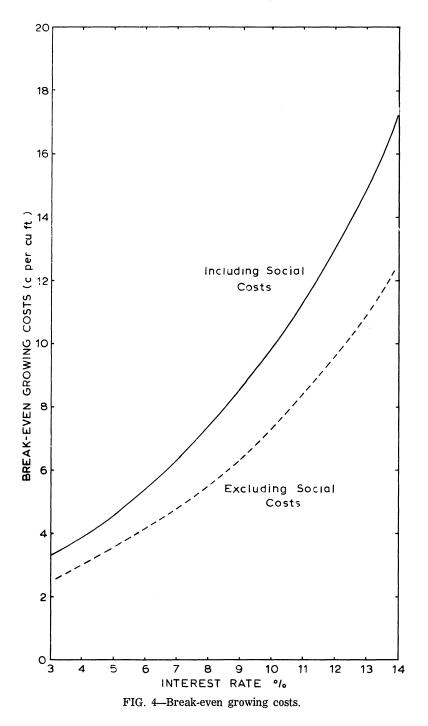



FIG. 3—Relative importance of forest and utilisation costs: percentage of cost f.o.b. Mt Maunganui (based on equivalent LEV) $\,$

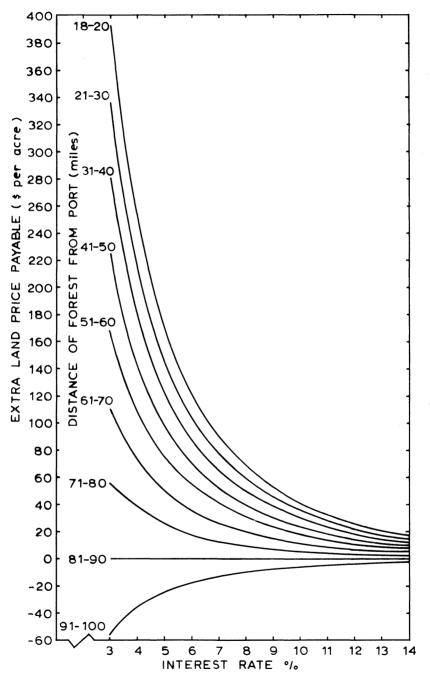
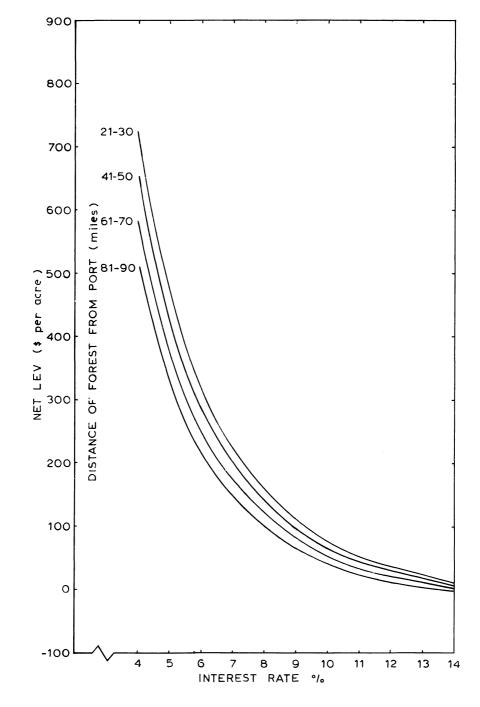
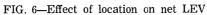




FIG. 5-Location effect on profit.

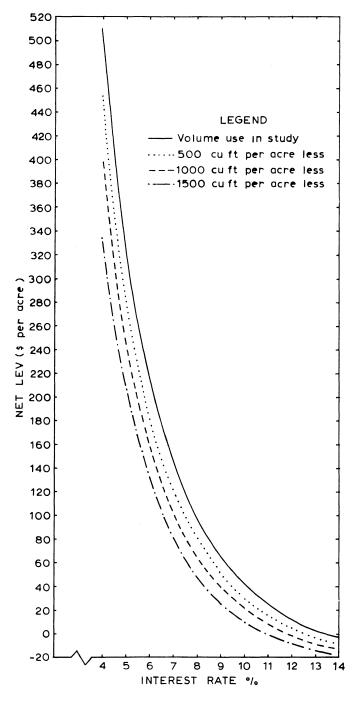


FIG. 7-Effect of lower yields on net LEV.

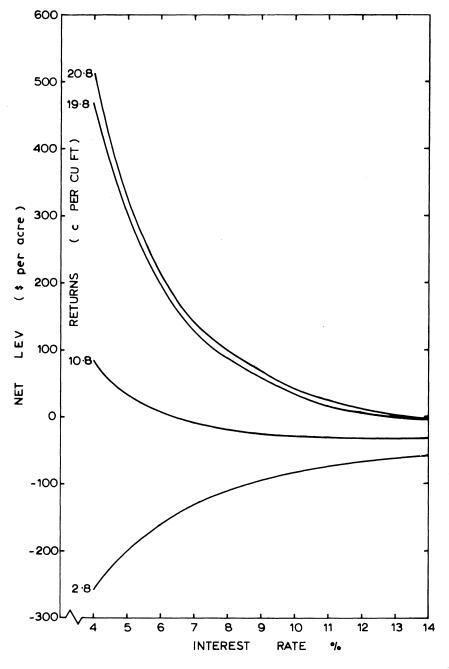


FIG. 8-Effect of changes in returns on net LEV.