Fungi silvicolaev novazelandiae: 9

P. D. Gadgil* and Margaret Dick

Scion, Private Bag 3020, Rotorua 3046, New Zealand

(Received for publication 8 July 2010; accepted in revised form 1 April 2011)

*corresponding author: peter.gadgil@scionresearch.com

Abstract

The fungi described in this paper have been recorded but not fully described from New Zealand. The fungi are:

Caulicolous Ascomycota: Heptameria obesa (Durieu & Montagne) Saccardo on Pittosporum tenuifolium Solander ex Gaertner; Pseudovalsa lanciformis (Fries) Cesati & De Notaris on Betula pendula Roth; Pseudovalsa longipes (Tulasne) Saccardo on Quercus cerris f. laciniata (Loudon) C.K.Schneider.

Corticolous coelomycetes: Diplodia scrobiculata J.de Wet, Slippers & M.J.Wingfield on Pinus radiata D.Don.


Xylophilous hyphomycetes: Phaeoacremonium rubrigenum W.Gams, Crous & M.J. Wingfield on Melia azedarach Linnaeus.

Keywords: fungal descriptions: fungi; New Zealand.

Introduction

The purpose of this series of papers is to provide descriptions of fungi recently recorded in New Zealand. Most of these records come from specimens sent to the Forest Health Reference Laboratory at this Institute (the New Zealand Forest Research Institute trading as Scion) for identification. In this ninth paper in the series, descriptions are provided for four ascomycetous, one coelomycetous and one hyphomycetous fungi. For examination, sections were cut using a freezing microtome. Sections and squash preparations were mounted in lactophenol.

The location record of local specimens examined is followed by the name of the arbitrarily defined geographical region (Crosby et al., 1998) to which the specimen belongs. The account of the New Zealand distribution of an organism is based principally on the Forest Health database maintained by this Institute. It is presented for each geographical region, with the number of records for that region given in parentheses.
Descriptions of fungi

Caulicolous Ascomycota (found mainly on twigs but occasionally also on leaves)

Heptameria obesa (Durieu & Montagne) Saccardo (Figures 1A, B & C)
Syllae Fungorum 2: 88, 1883.

Anamorph: Not known. Ascomata stromatic, pseudothecial, commonly embedded in a stroma in groups of 2–3 but occasionally solitary, densely gregarious, individual locules 360 – 500 μm diam, papillate; pseudothecial wall (90) – 110 – (130) μm thick, composed of pale brown, polygonal cells. Stromata subglobose, black, developing under bark, up to 1 mm long, becoming erumpent through linear or irregularly circular fissures. Asci bitunicate, clavate, (170) – 185 – (210) × (20) – 25 – (27) μm, 8-spored, separated by filiform pseudoparaphyses. Ascospores broadly fusiform, straight, biseriate in upper part of ascus, uniseriate below, 6 – 7 septate, (50) – 60 – (70) × (11) – 12 – (14) μm, smooth; median cell brown, muriform at maturity, with 4 – 6 transverse and 1 – 3 vertical septa, large (15 – 20 μm long); other cells hyaline and tapering towards both ends.

Habitat: Small dead twigs of Pittosporum tenuifolium Solander ex Gaertner.


Other specimen examined: On dead twigs of Baccharis sp., Gaviota, California, USA, 11.v.1939, F. Petrak, New Zealand Fungal Herbarium (PDD) 38025.

New Zealand distribution: Nelson (1).

Heptameria obesa has previously been recorded in Europe and the southern United States of America on dead fibrous and woody stems of plants in the Asteraceae (Lucas & Sutton, 1971), Dipsacaceae and Scrophulariaceae (Saccardo, 1883). There are no records of this fungus as a pathogen so it is regarded as a saprophyte.

Pseudovalsa lanciformis (Fries) Cesati & De Notaris (Figures 2A & B)


Anamorph: Coryneum brachyurum Link, Linné Species Plantarum 6(2): 124, 1825.
Ascomata stromatic, pseudothecial, embedded in a common stroma in groups of 4 – 5, individual locules 350 – 500 µm diameter. Stromata oval to lens-shaped, dark brown to black, composed of cushion-shaped prosenchyma, 0.5 – 1.5 mm long, developing under bark, becoming erumpent through a slit in the bark exposing a black disc on which the ostioles open without projecting. Asci bitunicate, cylindric-clavate, (135) – 140 – (150) × (23) – 27 – (29) µm, 8-spored. Ascospores narrowly fusiform, biseriate, 5 – 6 distoseptate, (35) – 42 – (46) × 13 – 16 – (20) µm, smooth, pale brown with hyaline ends. Conidiomata acervular, scattered, subepidermal, becoming erumpent through bark, dark brown, composed of cushion-shaped, vertically arranged pseudoparenchyma, 0.8 – 1.2 mm long. Conidiophores arising from upper cells of pseudoparenchyma, erect, branched, pale brown. Conidia narrowly fusiform, straight or slightly curved, 4 – 6 distoseptate, (35) – 50 – (60) × (12) – 16 – (20) µm, smooth, pale brown, apex obtuse with a hyaline tip, base truncate often with a part of the conidiogenous cell attached, many septa greatly thickened, considerably reducing the cell lumen.

Habitat: Small branches and twigs of *Betula pendula* Roth.

Specimens examined: Teleomorph: on small dead branches of *Betula pendula*, Top Valley Road, Wairau North (Marlborough), 22.vi.2007, B.H.Doherty, NZFRI-M 5428.


New Zealand distribution: Auckland (1), Hawkes Bay (1), Wellington (1), Marlborough (1).

*Pseudovalsa lanciformis* is regarded as a saprophyte as there are no records of this fungus as a pathogen

*Pseudovalsa longipes* (Tulasne) Saccardo (Figures 3A & B)

Attività della Società Veneto-Trentino di Scienze Naturali in Padova 4: 120, 1875.

Anamorph: *Coryneum umbonatum* Nees, *Das System der Pilze und Schwämme* 34, 1816-1817.


Habitat: Teleomorph found on dead twigs of *Quercus cerris* f. *laciniata* Loudon (C.K.Schneider). The anamorph has been found on small branches of

© 2011 New Zealand Forest Research Institute Limited, trading as Scion
Corticolous coelomycetes (found on or in bark, usually on the main stems)

Diplodia scrobiculata J.De Wet, Slippers & M.J.Wingfield (Figure 4)


Colonies grown on 2% malt extract agar reached an average diameter of 68 mm in 6 days at 25 °C, dark grey to black, aerial mycelium sparse, colony edge uneven. Mycelium dark, septate. Conidiomata pycnidial, immersed in the agar, covered with mycelium, papillate, (150) – 250 – (300) μm diam. Conidiophores discrete, lageniform, (10) – 12 – (16) μm long. Conidia clavate to almost cylindrical, straight or slightly curved, 0 – 3-septate, (33) – 40 – (46) × (10) – 13 – (15) μm, conidial walls thick (1.5 – 2.5 μm) and pitted, dark brown.

Habitat: Shoots, roots and stems of *Pinus radiata* D.Don.


New Zealand distribution: Northland (1), Auckland (1), Coromandel (1), Gisborne (1), Hawkes Bay (1), Rangitikei (1).

*Diplodia scrobiculata* is a segregate from *Sphaeropsis sapinea* (Fries) Dyko & B. Sutton (= *Diplodia pinea* (Desmazières) J.Kickx f.). Three distinct morphotypes (A, B and C) have been described for *S. sapinea* (Wang et al., 1985; de Wet et al., 2003). Kay et al. (2002) showed that all three morphotypes were present in New Zealand. In addition to morphology, isolates of the three morphotypes differed in pathogenicity and molecular characteristics. These differences were, however, not initially considered major enough to justify description of separate species. A study of isolates belonging to the three morphotypes, using multiple gene genealogies inferred from partial sequences of six protein-coding genes and six microsatellite loci, consistently grouped A and C morphotypes in separate but closely related clades; isolates of the B morphotype grouped together in a clade that was equally different to the A and C morphotypes, as it was to the clade encompassing isolates of *Botryosphaeria*.
obtusa (Schweinitz) Shoemaker, a species related to S. sapinea. These results indicated that B morphotype isolates were only distantly related to S. sapinea and represented a different taxon; this taxon has been described as Diplodia scrobiculata by de Wet et al., (2003). A re-examination of cultures of S. sapinea held in the New Zealand Forest Research Institute Culture Collection (NZFS) showed that a number of isolates were of the B morphology and belonged to D. scrobiculata. Diplodia scrobiculata has been shown to be a weak pathogen (Palmer et al., 1987).

Foliicolous Ascomycota (found mainly on leaves but occasionally also on twigs)


Leaf spots pale grey to straw-coloured with a dark brown margin, roughly circular to elongate, up to 30 mm (usually 12 – 15 mm) long × 5 – 10 mm wide, limited by veins, dotted with ascomata and conidiomata
TABLE 1: Morphological characteristics of Guignardia sp. from Macropiper excelsum and Guignardia aesculi

<table>
<thead>
<tr>
<th>Species</th>
<th>Ascomata</th>
<th>Asci</th>
<th>Ascospores</th>
<th>Conidiomata</th>
<th>Conidia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guignardia aesculi/Phyllosticta sphaeropsidea (Data from van der Aa, 1973)</td>
<td>Depressed globose, diameter up to 160 µm.</td>
<td>Small, black.</td>
<td>12 – 18 × 7 – 9 µm, hyaline with granular contents.</td>
<td>9 – 16 × 6 – 10 µm, hyaline.</td>
<td></td>
</tr>
</tbody>
</table>

Habitat: Necrotic leaf spots on living, green leaves of *Macropiper excelsum* (G.Forster) Miquel.

Specimens examined: On leaf spots on leaves of *Macropiper excelsum*, Nikau Reserve, Chatham Island (Chatham Islands), 13.x.2007, P.M.Bradbury, NZFRI-M 5490; on leaf spots on leaves of *Macropiper excelsum*, Nikau Reserve, Chatham Island (Chatham Islands), 27.v.2009, M. Hansen, NZFRI-M 5533.

New Zealand distribution: Chatham Islands (2).

Other specimens examined: on leaf spots on leaves of *Aesculus hippocastanum* Linnaeus, Lainzer Tiergarten, Wien, Austria, F.Petrak, PDD 38061 (as *Phyllostictina sphaeropsoidea* ≡ *Phyllosticta sphaeropsoidea*); on spots on leaves of *A. hippocastanum*, Steiermark, Bad Gleichenberg, Kurpark, Austria, 22.vii.1956, F.Petrak, PDD 39710 (as *Phyllosticta sphaeropsoida*).

The collections of *P. sphaeropsoidea* noted above and published descriptions of *Guignardia aesculi* (van der Aa, 1973, Ellis & Ellis, 1997) are very similar to the fungus on *M. excelsum* (Table 1). The two fungi, however, are probably not conspecific. *Guignardia aesculi* is widespread in Europe and North America and occasionally causes a severe leaf blotch of *Aesculus* spp. (Smith et al., 1988, Sinclair & Lyon, 2005). Stewart (1916) noted that the fungus was host-specific and isolates from different *Aesculus* species were unable to attack species other than the original host. No trees of any species of *Aesculus* exist near the area where our *Guignardia* sp. was found (Paul Bradbury, Brent Rogan, pers. comm.). Molecular analysis did not yield a close match with any other fungus.

Association of the *Guignardia* sp. with necrotic leaf spots on living leaves indicates that the fungus is probably a pathogen. Pathogenicity tests using seedlings of *M. excelsum* and *A. hippocastanum* are planned.

Xylophilous hyphomycete (found in the sapwood of living trees)

*Phaeoacremonium rubrigenum* W.Gams, Crous & M.J.Wingfield


Colonies on 2% malt extract agar reached an average diameter of 8 mm in 8 days at 30 ºC, reverse vinaceous red. Mycelium medium brown with darker septa and walls, hyphae tuberculate to verrucose, septate. Conidiophores arising from aerial or submerged hyphae, erect, simple or branched in the lower part, medium brown becoming lighter towards the tip, septate, variable in length. Conidiogenous cells terminal or lateral, phialidic, 5 – 35 μm long, with a funnel-shaped collarette, pale brown to hyaline, tuberculate to verrucose. Conidia ellipsoidal to allantoid, straight, (3) – 4 – (6) × 1 – 2 μm, smooth, hyaline, collecting in slimy heads.

Habitat: wood of dying branches of *Melia azedarach* Linnaeus.


New Zealand distribution: Hawkes Bay (1), Wanganui (1).

*Phaeoacremonium* species have been associated with wilt and decline diseases of various woody plants as well as infection in humans (Crous et al., 1996). *Phaeoacremonium rubrigenum* has been isolated from human patients and also from bark beetles and their galleries in *Quercus* and *Fraxinus* (Kubátová et al., 2004) in Czechia (formerly Czech Republic). In the Northern Hemisphere it has also been associated with Esca disease of grapevines and with a disease of kiwifruit vines (Essakhi et al., 2008).

Acknowledgements

We thank Paul Bradbury, Ben Doherty, Mark Hansen and Brent Rogan for specimen collection, Eric McKenzie, the Curator of the New Zealand Fungal Herbarium (PDD), for loan of specimens, and Matt Power for molecular analysis. We are grateful to Shaun Pennycook for his most helpful comments.
References


Saccardo, P. A. (1883). Sylloge Fungorum 2, Padua, Italy: Published by the author.


