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ABSTRACT 

A methodology for modelling the growth of managed even-aged stands has been 
developed. The state of a stand is represented by a number of variables — typically 
basal area, stocking, and top height. Changes of state through growth and mortality 
are given by a system of differential equations which are a multivariate generalisation 
of the Bertalanffy-Richards model. For estimation purposes random perturbations 
are included, and the parameters are estimated by maximum likelihood based on the 
resulting stochastic differential equations. The growth equations are complemented 
by models for thinning, early growth, volume per hectare, and diameter 
distributions. The methods have been applied to the development of a model for 
Pinus radiata D. Don in Golden Downs Forest, Nelson, with satisfactory results. 

INTRODUCTION 
A methodology for obtaining growth models for even-aged stands has been 

developed. The objective is the development of models at the forest and regional level to 
cover the whole of New Zealand, and the subsequent testing for possibilities of 
aggregation. The effort will concentrate mainly on the modelling of Pinus radiata 
plantations. 

The models consist of a set of differential equations describing changes in stand 
variables such as basal area, stocking, and top height. The model parameters are 
estimated by the method of maximum likelihood, under specific assumptions about the 
random variation in the model. The likelihood values may be used for evaluating 
similarities between different data sets and for other hypothesis-testing purposes. 

The methods have been applied to the development of models for P. radiata in 
Golden Downs Forest and in Hawke's Bay, with satisfactory results. Work is in 
progress on models for P. radiata in Auckland sand dune forests and in Kaingaroa State 
Forest, and for Pseudotsuga menziesii (Mirb.) Franco in Southland. An earlier model for 
P. radiata in Southland Conservancy (Garcia 1979) is considered provisional because of 
deficiencies in the data available. 

This paper concentrates on the methodological aspects, and especially on the results 
of applying the methodology to the Golden Downs data. A more user-oriented 
description of the Golden Downs model is in preparation. The general philosophical 
background for the methodology, and the mathematics of the model, have been 
discussed in more detail previously (Garcia 1979). 

An extended version of this paper is available from the author. 
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MODELS AND ESTIMATION PROCEDURES 
The model uses a state space approach — that is, a sufficient number of variables 

describe the "state" of the stand at any given time so that (a) future states are 
determined by the current state and future actions, and (b) quantities of interest, such as 
volumes, can be derived from the values of the state variables (Garcia 1979). In other 
words, the state variables summarise the historical events affecting the future 
development of the stand. For Golden Downs, it was found that three state variables 
— basal area, stocking, and top height — gave satisfactory results. A fourth variable, 
representing a measure of site occupancy after thinning, was tried but its inclusion was 
found unnecessary. The growth model predicts the changes in the state of the stand 
caused by tree growth, natural mortality, and thinnings. 

The changes in the state variables through tree growth and mortality are described by 
a set of differential equations. These will be called the growth equations, and may be 
used to predict the state of the stand in periods between thinnings. For Golden Downs 
the growth equations are not applicable to very young stands (top height less than about 
6 m), and a separate model is used for "starting" a simulation from age zero. 

Thinnings cause an instantaneous change of state. The thinning model relates the 
basal area removed to the number of trees removed, given before thinning values. The 
model assumes thinnings where the top height does not change. 

Given the state variables, volumes for various products may be estimated from stand 
volume equations or from "stand volume generators" (Goulding & Shirley 1979). A 
stand volume equation for total standing volume per hectare was derived from the 
sample plot data. Diameter distributions for use in stand volume generators were also 
obtained. 

Growth Equations 
The growth equations are a multivariate generalisation of the Bertalanffy-Richards 

model taking the following general form (Garcia 1979; the univariate Bertalanffy-
Richards model can be written as dxc/dt = axc + b): 

dy t = Ay + b 
(i) 

where 
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B = basal area (rnVha), 
N = stocking (stems/ha), 
H = top height (m), 
t = age (years). 
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The third equation in (1) represents the height growth (site index curves) and was 
estimated separately beforehand (Garcia & Lawrence in prep.). Therefore, the 
coefficients <Z33> b^ and C33 are here assumed known. 

Note that the form of the model does not change if instead of B and N we use other 
variables which are power transformations of these, such as mean d.b.h. (diameter at 
breast height) or average spacing. 

Previous experience with the model suggested that the number of free parameters in 
(1) might be excessive, leading to ill-conditioning in the estimation procedure (i.e., 
different combinations of parameter values result in about the same degree of fit). It also 
seems desirable to constrain the stocking to be always non-increasing, even outside the 
range of the data. A simple way of ensuring this, reducing the number of parameters at 
the same time, is to make a22 = an = b2 = c2\ = en = 0. Then the stocking will always 
decrease with time, provided that a2\ and c22 have opposite signs. 

The coefficients in (1) vary with the site quality. A convenient assumption is that the 
Cij are independent of site, and A and b change by a constant factor dependent on the site 
index. This implies that the effect of the site index is a change in the time scale with no 
effect on the relationships between the state variables. This assumption is compatible 
with the Golden Downs site index equations (Garcia & Lawrence in prep.), and was 
found satisfactory in the validation of the model. Given the site index equation of the 
form 

dH° 
— = b(ac-Hc), (2) 
at 

where 
b = - In [ 1 - (S/af] / (20 - t0) (3) 

and S is the site index, the effect of the site in the model can be conveniently represented 
by using a "scaled time" r = bt in the place of t. 

The specific form of the model which was used is then: 
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where r = bt, with b related to site index through (3). Here 63 and cn are assumed known, 
specifically, 63 = ac and C33 = c from (2). Defining x = (B,N>H)3 and xc = exp [C In x], (4) 
may be written using matrix notation as 

dxc . r — = Axc + b 
UT 

(5) 
or c 

lt = A(X" " 3)' 



68 New Zealand Journal of Forestry Science 14(1) 
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Given the state at time fi, (5) can be integrated to obtain the state at any other time t2 if 
there are no thinnings between t\ and t2: 

x (t2) = {a + p - V b ^ - '0 P [x(tOc - a]} c_1 (6) 

Here P and A are such that A is diagonal and 

A = P A P , 

that is, the elements on the diagonal of A are the eigenvalues of A (assumed to be real 
and distinct, see Garcia 1979), and the rows of P are the left eigenvectors. A slightly 
more complex equation could be used if A were a singular matrix (Appendix). 

Estimation 
To estimate the parameters we assume that the growth described by (4) is perturbed 

by random terms added to the right-hand sides. These random terms are assumed to be 
stationary Gaussian random processes with independent increments (i.e., Wiener or 
Brownian motion processes). The three processes may be cross-correlated, and the 
elements of the covariance matrix are additional parameters to be estimated from the 
data. 

The Equations (4) with the random components added constitute a set of stochastic 
differential equations, which can be integrated to obtain the probability distribution of 
the state at any time given the state at some other time (provided that there are no 
thinnings in between). In particular, for each pair of consecutive measurements with no 
thinnings between them, and for a given set of parameters, we can compute the 
probability of observing the second measurement given the first one. Assuming 
statistical independence between plots, these probabilities may be aggregated over all 
the data to obtain the probability of generating the observed data from the given model 
(Garcia 1979). This probability, considered as a function of the parameters, is called a 
likelihood function, and the method of maximum likelihood (ML) consists of selecting 
as estimates the values of the parameters which maximise the likelihood. 

Estimation is simplified if it is assumed that the covariance matrix for the stochastic 
process is diagonal after an eigenvector transformation (Appendix). We shall call 
Method I the ML estimation under this assumption, and Method II the ML estimation 
using the more general covariance matrix. The respective likelihood functions are 
shown in the Appendix. 
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Both Methods I and II were tried. The parameter estimates were obtained by 
maximising the log-likelihood with a general-purpose optimisation algorithm (Biggs 
1971, 1973; N.O.C. 1976). 

"Thinning Effect" 
It seems plausible that after heavy thinnings some growth could be necessary for the 

residual trees to make full use of the additional resources made available to them by the 
removal of competitors. Therefore, it might be expected that the growth immediately 
after a thinning would be less than that of a stand of similar basal area, stocking, and 
height, but not recently thinned. 

An extension of the basic growth model (4) was tried in an attempt at modelling this 
"thinning effect". However, the results from fitting this extended model were negative, 
and examination of the prediction residuals from (4) also failed to show any evidence of 
reduced growth after thinning. For completeness, the extended model is described 
here, and the results are discussed further under "Model Fitting and Results". This 
model was later tried with satisfactory results on a data set for P. radiata in Hawke's 
Bay. 

The data available did not contain enough measurements of green crown level for 
using this as a variable, so that an artificial measure of "relative site occupancy" was 
used. The relative site occupancy, J?, at the time of a thinning was taken as the ratio of 
basal area after thinning to the basal area before thinning. After the thinning R was 
assumed to increase towards an asymptotic value of 1. Specifically, the following 
extension of (4) was used: 

'dBuNnHnRu 
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For R = 1 (full site occupancy) this model is equivalent to (4). 
For estimation purposes, only the first three equations in (7) are assumed to have a 

random perturbation on the right-hand side. Since there are no observations ofR other 
than at the time of thinnings, the fourth equation in (7) is taken as deterministic, and 
may be solved as: 

R = [\-(l-R0
 4A)e 44 ] 4 4 , (8) 

where RQ is the thinning ratio (ratio of basal area after thinning to basal area before 
thinning) for the last thinning, T is the time elapsed since the last thinning, and b is 
given by (3). 
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Model (7) was also tried with a\4 = C2A - 0. The predicted R was always found to 
approach 1 too slowly. Therefore, (8) was also constrained so that J? would increase from 
0.5 to 0.99 in 4 years for site index 27. This additional constraint is: 

1 - 0.99C44 

a44 = 3.9036 In t44. (9) 

Thinnings 
The thinning model is used to predict the basal area removed in a thinning given the 

number of trees removed, or vice versa. It is desirable for the model to be closed under 
composition. That is, removal of 40 stems/ha followed by removal of 60 stems/ha 
should result in the same final basal area as the removal of 100 stems/ha. This type of 
consistency is ensured with a model based on a differential equation for the change in 
basal area relative to the change in stocking. The general form of the equation used may 
be written as 

iH =-BbN^H\ (10) 
d In N 

where a, b, c> and d are parameters to be estimated. On integration this gives 
InB = - In [ Bo ~h - ab

cH
d(Nc - N0

C) ] /b, (11) 
if b and c are different from zero. Here B0 and No are the basal area and stocking before 
thinning and B and N those after thinning. 

Equation (10) is mathematically convenient and fairly flexible; for example, the 
model used by Elliott & Goulding (1976) corresponds to the special case of b = c = d = 0. 

Equation (11) was fitted with a nonlinear least-squares procedure to the thinning 
data. The equations obtained from (10) with 6, c, or d equal to zero were also tried. It was 
found that making b = 0 had a negligible effect on the prediction error, so that this 
simpler equation was used. The integrated form is 

In B = In Bo + a
cH

d (Nc - NQ
C). (12) 

Early Growth 
The differential equations described well the growth within the range of the data 

available but were found to be unreliable for top heights less than about 6 m. A separate 
model for "starting" simulations beginning at age zero was needed. 

A simple model for early growth was used to derive a relationship between basal area 
and stocking at a given height. Let U be some measure of "site occupancy", such as 
crown cover or leaf area index, assumed to be related to basal area and stocking by 

U=aB + pN>'<x,P>0, (13) 
until it reaches a maximum of t/max (full site occupancy, crown closure), after which it 
remains constant. The motivation for the second term on the right-hand side in (13) is 
that for B = 0 at H = 1.4 m there would be some site occupancy fi per tree. Assume that 
the basal area growth is proportional to U: 
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dB 
— =f(H9r)U, (14) 

where/(//, r) is any arbitrary function of the height and the adjusted time, and that there 
is no mortality. Then, it can be shown that for any given top height, 

((a/c-b)N , for N^c 
B= < (15) 

\a]nN-bN + a(l-kic), forN^c, 
where <z, b, and c are constants. The parameter c depends on the height, while a and b do 
not. 

A more general model may be obtained by using 

^ =f(H, r ) U 7 (16) 
dr 

instead of (14). 

DATA 
Golden Downs State Forest is located in the Nelson district, near the northern end of 

the South Island of New Zealand (latitude 41.5°S, longitude 173°E). It is the second-
largest exotic forest owned by the N.Z. Forest Service, with 22 400 ha of P. radiata and 
9170 ha of other species. 

The data were obtained from the Forest Service Permanent Sample Plot (PSP) 
System {see McEwen 1979 for a description of the PSP System and details of the 
computation of top height and volume). 

The data for the growth equations were screened according to a number of criteria. 
Plots flagged in the PSP System as abnormal or unsuitable for growth modelling and 
plots in naturally regenerated stands were excluded. Also excluded were measurements 
taken after application of fertilisers or poison thinning, and measurements with missing 
or insufficient data (at least eight height sample trees were required). Increment periods 
with more than two windblown trees in the plot, or where the mean d.b.h. of the 
windblown trees exceeded the mean d.b.h. for the plot, were not used. If necessary, the 
ages were adjusted for date of measurement as described by Garcia (1979), and 
measurements in November to January, where no satisfactory adjustment is possible, 
were eliminated. 

The final data set for the growth equations consisted of 469 measurements from 119 
different plots, forming 339 measurement pairs. The selected data are plotted in Fig. 1. 
Some limitations in coverage can be seen from the graphs. There are no data for very 
young stands, and data from very old stands are unreliable because of large relative 
errors in the height increments caused by a combination of slow growth, broken tops, 
and large measurement errors (several older plots show negative height increments). 
Also there is little information from dense (unthinned) stands, and their trends are 
rather erratic. These trends are probably due, at least in part, to the normal variability in 
natural mortality: mortality is likely to be concentrated in years when climatic 
conditions are unfavourable. The graphs in Fig. 1 give an indication of those values of 
the state variables for which the model would be unreliable. 
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FIG. 1 — Measurements from the 119 sample plots forming the data base 
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Other limitations of the data should be mentioned. The PSP System contains no 
information on pruning, and that contained in "plot history sheets" was found to be 
incomplete and unreliable. Any effects of pruning on growth would be confounded with 
the effect of thinnings through the values of the state variables. The model would reflect 
the average pruning usually applied in conjunction with thinnings. Also, information on 
green crown levels was available for very few plots, thus precluding any attempt at using 
this variable for accounting for pruning and thinning effects. 

MODEL FITTING AND RESULTS 
Height Growth 

The general model used was (2) or, integrated with initial condition H — 0 at t = r0, 

H = a[\-e-h^-i°)}l/c (17) 
To obtain a family of site index curves, one parameter (or some function of the 
parameters) in these equations must vary from plot to plot as a function of the site index, 
with the rest of the parameters being the same for all plots. 

An error structure containing both measurement errors and environmental variation 
was assumed, and all the parameters were estimated simultaneously by maximum 
likelihood. Models with the site-indexing parameter a> b, or a linear function of a and b 
were tried. Best results were obtained with b as the indexing parameter. It was also 
found that a non-zero value for t0 resulted in a better fit to the data. The fitting of the 
height growth model is described in detail by Garcia & Lawrence (in prep.) and the 
methodology by Garcia (1983). The parameter estimates are 

a =51.752 

c =0.41272 

fo = -2.5793 
(height in metres, age in years). The value of b is obtained from (17) with the site index5 :x 5 
substituted for the height at age 20 (Equation (3)). 

Basal Area and Stocking 
Site index 

For most plots the site index needed for fitting the growth model was obtained in the ie 
process of developing the site index curves. For plots not used in the height growth 
model, the site index was estimated as the average of the site indices corresponding to 
each height-age measurement. 
Early growth 

It is often necessary to predict the development of a hypothetical stand from the time ie 
of planting. The unconstrained model fitted to the available data, however, cannot be 
expected to give good predictions starting at age zero. Two solutions to this problem 
were tried. One is to use the model only for ages close to those represented in the data, 
and to develop a separate model for predicting the early growth (as described in a 
previous section). The second one is to somehow constrain the model so that it behaves s 
reasonably well at very young ages not represented in the data. 
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This second approach was implemented as follows. The initial growth in a stand is 
free from competition between the trees, so that it may be assumed that the mean d.b.h. 
for young stands is a function only of height, independent of the stocking. Examination 
of some data from young stands and backward projections with the unconstrained 
model suggested as reasonable a mean d.b.h. of 5 cm at top height 4 m. All initial 
measurements of plots which had not been thinned before the first measurement, were 
collected. Using information on the initial spacing, if available, and/or Beekhuis' (1966) 
mortality curves, an estimate of the stocking at top height 4 m for each of these plots was 
obtained, and the basal area calculated assuming a mean d.b.h. of 5 cm. The result of 
this was an extra set of 40 artificial "measurement" pairs covering early stand growth. 
We shall refer to the data set consisting of the actual 339 measurement pairs plus the 40 
artificial pairs ŝ the "extended data set". Given only the initial spacing, a model fitted 
to the extended data set could be used to predict the development of a stand by starting 
the model at top height 4 m with a mean d.b.h. of 5 cm. 
Results 

A number of variations on the Models (4) and (7), using estimation Methods I and II 
and the actual and extended data sets, were tried. The main results are summarised in 
Table 1, which shows the maximised log-likelihoods. For a given set of data, different 
models may be compared by considering the number of parameters and the difference 
in the maximised log-likelihoods. There is no fully satisfactory theory for comparing 
models, but several different arguments suggest subtracting from the maximised log-
likelihood one-half to three units for each additional parameter, and viewing differences 
of more than two units after this adjustment as "significant" (see Garcia 1979, 1983; 
Atkinson 1980). The values for the actual and for the extended data sets are not directly 
comparable, and some other ways of comparing these are discussed below. 

An extensive analysis was also carried out with an earlier version of the data set which 
was found later to contain a few measurement errors. The results generally agree with 
those shown in Table 1. 

The likelihood maximisation was performed using the subroutine OPVM written by 
Hatfield Polytechnic's Numerical Optimisation Centre (N.O.C. 1976; Biggs 1971, 
1973), with numerical approximation for the derivatives. In general, the estimation 
procedure performed well although, especially for the models with large numbers of 
parameters, good initial estimates were usually needed for converging to a solution in a 
reasonable number of iterations. For this reason, whenever possible the parameter 
estimates for a model were used as the starting point for estimating the parameters of the 
next more-general model. Also, estimates for the actual data set were frequently used as 
starting values for models fitted to the extended data set, and Method I estimates were 
used as starting values for Method II. Often the estimates were checked by starting the 
optimisation procedure from different points; no instances of multiple local optima 
were found. 
Model selection 

Models 5 to 8 (Table 1), which include adjustments for "thinning effect", seemed to 
fit the data better than the others. However, when basal area increments were computed 
with these models it was found that values of the "site occupancy" R smaller than one 
generally gave higher increments than for stands fully occupying the site (R = lj. 
Therefore, these models are unacceptable. 
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TABLE 1 — Log-likelihood values (number of parameters in parentheses) §-

ft 
3 
? 
2L 

Model 
No. 

1 
2 
3 
4 
5 
6 
7 
8 

Actual data 
Method I 

— 
2508.4 ( 9) 
2620.2(12) 
2636.9(17) 
2633.6 (14) 
2647.4(15) 
2634.7 (16) 

— 

Method II 

— 

— 
2640.8 (15) 

— 
— 
— 
— 
— 

Extended data 
Method I 

2048.3 ( 8) 
2104.1 ( 9) 
2405.6 (12) 

— 
2432.2 (14) 
2458.1 (15) 
2432.7 (16) 
2467.3 (17) 

Method II 

— 

— 
2429.2 (15) 

— 
2449.6 (17) 
2468.6 (18) 

— 
— 

Model description 

Eq. (4) with a\2 = an = Ji = 0 and c\2 = c22 

Eq. (4) with an=b\=0 and cn — c22 

Eq. (4) 
Eq. (4) with a2l, a23, b2, c2\, and c22 free, as in (1) 
Eq. (7) with a24 = c24 = 0 and constraint (9) 
Eq. (7) with a24 = c24 = 0 
Eq. (7) with constraint (9) 
Eq. (7) 
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Models 1 and 2, and other simpler models tried with the initial data set, are 
specialisations of the equations in (4). They were obtained by constraining the model to 
satisfy some common forestry hypothesis, such as independence between gross basal 
area increment and stocking, existence of an invariant relationship between /?, N, and// 
(Decourt 1974), and the asymptotic relationships implied by Reineke's (1933) density 
index and Beekhuis' (1966) mortality model. These models are clearly inferior to Model 
3, and therefore will not be discussed further. They were useful, however, in providing 
initial estimates for the parameters in the other models. 

For completeness, a model including the free parameters #22? # 2 3 j 62,C2i,andc235asin 
Equation (1), was fitted (Model 4 in Table 1). This appears to fit the data somewhat 
better than Model 3. However, 4 sometimes predicts stockings increasing with time, 
although this happens outside the range of the data. It seems then preferable to use 
Model 3 which is constrained to produce reasonable predictions over the whole state 
space. 

Graphical examination of the predictions from Model 3 fitted to the actual and to the 
extended data sets showed very small differences for the region of the state space where 
most of the data are found, but larger differences at the extremes, e.g., for high basal 
areas and top heights. As expected, the predictions from the model fitted to the actual 
data appeared in general closest to the observed values. A measure of the differences was 
obtained by computing the log-likelihood for the parameter estimates obtained with the 
extended data set when applied to the actual data. This log-likelihood differed from the 
optimum by 30.7 units for Method I and by 236.1 units for Method II. This indicates 
that trying to force the model to be applicable to very young stands resulted in a 
substantial loss of accuracy in the predictions for stands represented in the data. It was 
decided then to use the model fitted to the actual data and to use a different procedure 
for estimating the growth of young stands. 

Comparison of the log-likelihoods between Method I and Method II would indicate 
a better fit for Method II (the two methods are based on different models for the 
random components). The results of Method II for Model 3 on the actual data set were 
somewhat peculiar in that the optimal value of a\ i was close to zero, which implies that 

Ai is approximately equal to - A: and corresponds to a discontinuity in the computed 
likelihood (Appendix). This did not happen with the extended data set. Graphical 
comparisons of the basal area and mortality predictions from Model 3 fitted with 
Methods I and II showed relatively small differences. The adequacy of the models was 
examined further by plotting the computed eigenvectors as suggested by Garcia (1979). 
The graphs for Model 3 fitted with Method II showed large deviations from the 
expected pattern (details are available from the author). Method I would also appear to 
have advantages in relation to some proposed techniques for studying the effect of 
fertilisers, heavy thinning, pruning, and other factors, making use of the computed 
eigenvalues and eigenvectors. For all these reasons, the model obtained with Method I 
was selected. It may be mentioned, however, that Method II has given satisfactory 
results in a model for Auckland sand dune forests, currently under development. 

The model finally selected is then Model 3 (i.e., Equations (4)), fitted with Method I 
to the actual (not extended) data set. The parameter values are shown in Table 2. 
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TABLE 2 — Parameter estimates 

77 

Parameters: 

C = 

A -

b = 

r0.482 83 
0 
0 

"0.452 84 
8.379 OX IO"4 

_0 

"7.205 3~ 
0 

_ 5.097 7_ 
Computed eigenvalues, etc.: 

Xi = 
X2 = 

x 3 = 

P = 

-0.451 2< 
-0.00155 
-1 

Units: g(m2/ha) , AT (ster 

)0 
3 48 

n 
0.001 856 68 

Lp 
ns/ha), H (m) 

-0.159 56 
-0.524 58 
0 

-0.836 70 
0 
0 

a = 

1.85401 
1 
0 

0.231 54 
0 
0.412 72_ 

-0.488 33" 
0 

-1 

"0 
5.636 33 
5.097 73_ 

-0.889 958 
-0.000 908 079 
1 

Evaluation 
For each measurement pair, the values of the state variables at the time of the second 

measurement were predicted given the values of the first measurement. Figure 2 
compares the basal area and spacing predictions with the observed values. In Fig. 3 the 
prediction residuals are shown in a form that would facilitate the detection of any 
systematic biases. Here the value of the ordinate for the first point of each line segment 
is the first measurement. The value of the ordinate for the point corresponding to the 
second measurement is the prediction residual added to the value of the first 
measurement. The predicted height was used for the abscissa. Thus, the slope of the line 
represents the prediction error relative to the height increment between measurements, 
and the graphs show how these errors vary for different values of the state variables. 
Ideally, all the lines should be horizontal. 

Basal area predictions appear satisfactory over the range of values for which there are 
adequate data. Predictions are more uncertain for dense unthinned stands, where there 
are few data and the trends are erratic owing to the effects of mortality. The model can 
only predict an "average" mortality, and any particular stand may be expected to 
deviate substantially from this value. The graphs also show large deviations for old 
stands; these deviations result mainly from the large relative measurement errors for the 
height increments. 

Any substantial thinning effect would be apparent in Fig. 4. Figure 4a shows the 
differences between observed and predicted basal areas for the second measurement of 
each measurement pair, for measurement pairs immediately after a thinning, at least 4 
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FIG. 2 — Comparison of measurements and model predictions 

years after thinning, or at intermediate times. Figure 4b shows the same residuals 
plotted v. the thinning intensity, expressed as the ratio of basal area after thinning to the 
basal area before thinning. Extensive plotting of computed eigenvalues and eigenvectors 
also failed to show any evidence of thinning effect. 

A similar graphical analysis was done for checking the hypothesis that site index was 
adequately accounted for by the time-scaling factor (Fig. 5). 
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FIG. 3 — Prediction residuals (see text) 

The expected prediction errors are a complicated function of the state variables and of 
the length of the time interval over which the prediction is made. It is traditional with 
regression models to give standard errors and confidence intervals for the parameters 
and sometimes for the predictions, always computed under the assumption that the 
model is "true". This could be done for the present model, but we think that it would be 
unrealistic and difficult to interpret. Direct graphical comparisons with the dat& as 
shown above, appear to be much more useful for assessing the reliability of predictions 
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TABLE 3 — Measurement pair residuals 
Mean time interval: 2.02 years 

Mean RMS 

Basal area (m2/ha) 
Stocking (stems/ha) 
Top height (m) 
Mean d.b.h. (cm) 
Average spacing (m) 
Basal area X height (mVha) 

-0.051 0 
-2.92 
0.071 1 
0.049 8 

-0.004 72 
-3.06 

2.26 
64.1 
0.696 
0.655 
0.086 2 
79.8 

for various regions of the state space. It is also intended to study methods of prediction 
error estimation by regression of transformed residuals on functions of the state 
variables and prediction time interval. Some summary statistics for the residuals* are 
given in Table 3. Notice that the residuals include the effect of measurement errors. 
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Early Growth 
Since there were no data available for very young stands, it was decided to use the first 

measurement of the plots which had not been previously thinned, and project these 
measurements, backwards or forwards, to a common top height using the growth 
equations. These points were then used for estimating the parameters in (15). Only 
measurements in which the top heights were less than 15 m (38 measurements) were 
used. 

Equation (15) predicts that B should be directly proportional to N for N between 0 
and c. Projecting the first measurements of the unthinned plots to various heights using 
the growth equations showed this relationship to be approximately linear for H = 7 m, 
but not for other values of//. This may be an artifact caused by the form of the growth 
equations, or it may be that the assumptions behind (15) are too unrealistic. A more 
general model based on (16) could have been used, but it was felt that the information 
available did not justify the additional complexity at this stage. It was decided then to fit 
(15) for H = 7 m. Thinnings at less than 7 m top height are therefore not catered for 
(none were present in the data). 

Estimating the parameters in (15) by nonlinear least-squares using the measurements 
projected to top height 7 m resulted in 

fo.0079430 JVifAT< 1711.2 
B= (18) 

(44.614 In N - 0.018128 JV - 287.54, otherwise. 
It must be pointed out that these estimates only represent an "average" based on the 

available sample plot data. Actual basal areas at height 7 m will be affected by such 
things as establishment techniques, frosts, and weed competition. 

Thinnings 
All models based on (10) with some combinations of the parameters b, c, and d equal 

to zero were tried. The parameters were estimated by integrating (10) to obtain 
equations for In B as a function of N, H, BQ, and N09 and using a nonlinear least-squares 
procedure on these equations. Data from 59 thinnings were used, consisting of top 
height and basal area and stocking before and after thinning. 

The root-mean-squared errors for In B for the different models are shown in Table 4. 
Model 7 was selected, since it fits the data almost as well as the full Model 8, and appears 
better than the best two-parameter Model 4. The fitted model is: 

B = Bo exp [ - 31.891 H -°-28330 (N -°-094574 - No -°-°94574)] , (19) 

where H is the top height (m), BQ and B are the basal areas before and after thinning 
(mVha), and NG and N are the stocking before and after thinning (stems/ha). Notice 
that the model may also be used to estimate the basal area before thinning given the 
basal area after thinning. 

This model represents an average based on the thinnings performed on the sample 
plots. Actual values may vary depending on the selection criteria used. 



Model 
number 

1 
2 

3 
4 

5 
6 

7 

8 

Non-zero p 

a 

a, b 

a, c 

a, d 

a, b, c 

a, by d 

a, c, d 

a, b, c, d 
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TABLE 4 — Thinning models 

neters RMS for 

\nB 

0.119 74 
0.074 54 
0.118 89 
0.074 05 
0.074 10 
0.071 14 
0.069 50 
0.069 48 

Volumes 
A stand volume equation for total cubic volume was obtained using the sample plot 

data; 584 plot measurements were available for developing the volume equation. 
Stand volume equations used in New Zealand have been mostly of the form 

V/B = a + bH (20) 
(Beekhuis 1966)., where Fis the volume per hectare. The volume/basal area ratio is used 
as the dependent variable when estimating the parameters by least squares because of 
heteroscedasticity when using V. As pointed out by Beekhuis (1966, p. 19), Equation 
(20) cannot be valid both before and after a thinning, because the thinned trees tend to 
be shorter than the average, so that the volume per unit of basal area after the thinning 
must be greater than that before the thinning. A generally applicable equation for V/B 
should then be a function of N and/or B, in addition to H. 

To find an appropriate model for the V/B regression, 42 transformations of B, N, and 
H were tested as independent variables, and screened using stepwise linear regression. 
The results for the best regression equations found are summarised in Table 5. All 
variables in the five-variables regression had a t-value significant at the 5% level. In 
practical terms, however, the differences in the predictions from the various equations 
are small, so that the simplest extension of (20) was selected: 

V/B = 1.2645 + (0.27630 4- 0.16001 / y/W) H, (21) 

where V = volume (mVha), B = basal area (rnVha), N = stocking (stems/ha), and H = 
top height (m). The residuals are plotted in Fig. 6. 

Diameter distribution estimates for using with Goulding & Shirley's (1979) stand 
volume generator were also obtained. The approach taken consists of fitting a linear 
regression equation for the logarithm of the coefficient of variation of the tree squared 
d.b.h. on transformations of B, N, and H. Given the coefficient of variation and the 
mean squared d.b.h. D2 = (40000/7r)B/Ny the parameters for a Weibull distribution can 
then be computed as shown by Garcia (1981). 
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First a regression equation was selected by stepwise regression techniques using a 
subsample of the data. The subsample consisted of 55 plots with 30 or more trees each, 
selected using a grid of points covering the mean d.b.h./average spacing plane. The 

TABLE 5 — Best regressions for V/B with various numbers of independent variables 

Independent variables Standard 
error (m) 

H 

H, H/>jN 
H, H/y/N9 NH/B 
H, H/sfN, NH/B, VH 
H, H/y/N, NH/B, VH, H/N 

0.2233 

0.2159 

0.2140 

0.2101 

0.2074 

0.9926 

0.9931 

0.9932 

0.9935 

0.9937 
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FIG. 6 — Stand volume equation residuals 

14 16 

parameters in the selected regression equation were then re-estimated using the full 
data set (562 plots). The following equation was obtained: 

In CV = 4.3648 + 0.010174 B - 1.1669 In D + 0.83613 In H (22) 
S.E. = 0.25287, r2 = 0.57386 

Work is in progress on estimating the height/d.b.h. relationships. 
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Caution should be exercised in using d.b.h. distributions. It is not generally 
recognised that distributions based on sample plots may differ from the distributions 
for whole stands or compartments, which are the ones usually required in the 
applications. There is a spatial autocorrelation for tree size, negative at short distances 
owing to competition, and positive over longer distances owing to microsite similarities 
(see Bouchon 1979 and references therein). This implies that the variance of a d.b.h. 
distribution would vary with the size of the area considered, although the practical 
significance of this variation is an open question. 

DISCUSSION AND CONCLUSIONS 

The general methodology developed here gave satisfactory results and can be used to 
develop models for other regions and/or species. 

The cause for the apparent absence of a "thinning effect" in Golden Downs Forest is 
not clear. The model described in the section "Thinning Effect" has been found to be 
satisfactory for P. radiata in Hawke's Bay, and a model with a four-dimensional state 
space has been developed for this region. 

The main limitation of these two models is probably the exclusion of pruning effects, 
because of the lack of pruning information in the basic data. It is likely that pruning 
could be handled satisfactorily through a fourth stand variable, as outlined under 
"Thinning Effect". It is intended to investigate this further when developing a model 
for Kaingaroa Forest, where a number of pruning experiments exist. 

The handling of site index through a time-scale factor as done here would be adequate 
only when the height-age curves have common asymptotes. For some forests, models 
where the height asymptotes change with site index may be more adequate. The best 
way of introducing site index in the growth model for these would probably be through 
a scale factor for the asymptote vector a. This has been found satisfactory for P. radiata 
in Auckland sand dune forests. 

After a number of models become available, it would be interesting to find out if some 
of the regions or forests could be represented by common models. This could be tested 
by fitting models with the pooled data and comparing the log-likelihood for the 
common model with the sum of the log-likelihoods for the separate models. 

Although these methods and models appear to be an improvement over known 
alternatives, it is clear that some aspects of them need additional research. Some 
revisions may be expected as experience with other data sets accumulates. 
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APPENDIX 

LIKELIHOOD FUNCTIONS 

The model used for estimation is 
dxc - (Axc + b) dr + B dw , (Al) 

where B is a/> Xp matrix and w is the standardisedp-dimensional Wiener (or Brownian 
motion) process. For Model (4) the dimension of the state space,/), is 3. The data consist 
of n pairs of consecutive measurements, and we use the notation x b x2 for the first and 
second measurements of each pair, respectively, and AT for the scaled time interval 
between the two measurements (Model (7) is somewhat different because the changes in 
R are not measured, and it is discussed later). 

From (Al) it is shown (Garcia 1979) that the log-likelihood is 
In I = - Vi (np In 2TT + X In | V | + 1 e' V"1 e ) 

+ « In abs (| P !• |C |) + 1'2 In x2
c - 1'2 In x 2 , 

where the sums are over all the observation pairs, 
e = P x2

c eAAr P xic + (I - eXAr) A _1 P b , (A3) 
P and A are the eigenvectors and eigenvalues of A, i.e., A = P"1 AP, with A diagonal, 
and 1' = (1, 1, 1). The elements vX] of the p X p matrix V are given by 

e (Ai +Aj ) A r _ } 

*>u = — — * J > ( A 4 ) 
Ai i" Aj 

where sy are the elements of S = PBB'P ' . 

Equation (A3) is written in a form slightly different from the (2.3.9) of Garcia (1979) 
in order to allow for where A is singular, i.e., where any of the eigenvalues K is zero. The 
non-zero elements of the diagonal matrix (I - eAAr)A_1 in the last term of (A3) are of the 
form (1 - eAiAr)/Ai. If Ai = 0, the limiting value 

1 - e A'Ar 

lim 
Xi - 0 ^ 

should be used. Similarly, (A4) would result in vx\ = Arsa. 

Estimation Method II consists of finding the values of A, b, C, and S that maximise 
(A2). S may be forced to be positive-definite by substituting S = UU', whereU is 
lower-triangular. 
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Method I is based on the special case of (Al) where the matrix PBB'B' is diagonal. 
This is the same as saying that the elements ofd(Pxc) are uncorrelated. In this situation 
it is possible to eliminate S from (A2), reducing the log-likelihood to 

p P 

InL = - M(np In 2TT + np + nl In a*2 + SSln/fc) 

(A5) 
+ n In abs ( |P |.| C |) + 1' 2 In x2

c - 1' 2 In x2, 

A 2 1 < i 2 

where ox = 2 ~ > 
n R{ 

and 

Ri= -— (or AT if Ai = 0). 
2Xi 

The Si2 are the ML estimates for the terms in the diagonal covariance matrix PBB'P'. 

For the estimation of parameters in (7) the fourth equation is considered as 
deterministic, since R (*4) is not observed at every measurement. It is found that the 
likelihoods may be obtained by first computing e from (A3) using the appropriate 
four-dimensional vectors and matrices and using the fact that u = 0. X2C is also 
computed using the full C matrix. Then the likelihoods are given by (A2) or (A5) with/) 
= 3 and using the three-dimensional vectors and matrices corresponding to the first 
three components. 


