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ABSTRACT
A database consisting of 299 Pinus radiata D. Don sample plot periodic growth data,

soil measurements (mainly from the A horizon profile) gathered from within each plot,
as well as relevant climatic data, was updated and revisited.

The plots were in various forests in the North Island of New Zealand. The soils
relevant to the plots were grouped according to the New Zealand Soils Classification
from which 11 classes can be recognised. These classes were examined by a multivariate
discrimination analysis utilising A horizon soil variables as predictors. The various
classes separated into two major groupings, with virtually all the classes being correctly
classified for at least 75% of the data. The major discriminators were silt and clay
percentage, the depth of the A horizon, organic carbon (%), and total nitrogen (%).
Phosphorus (Bray or Olsen), Bray-extractable cations (calcium, potassium, and
magnesium), average resistance, and soil pH had no significant effect on the separation
of the classes.

These data were augmented by climatic data and attempts were made to build a
predictive system for mean top height (average height of the 100 largest trees by diameter
at breast height). At first, separate equations were assayed for each soil class, but
insufficient replication for some soils necessitated a pooled model. A nonlinear equation
was constructed that was largely unbiased over the soil classes with an approximate R2

value equal to 0.77. The residual root of the error mean square was around 3 m. The
dominant predictor variables were the age of stand when sampled, depth of the A horizon,
average wind velocity, mean annual rainfall, and altitude.
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The model should be used cautiously as it is very difficult to produce a predictive
system of stand growth without partially confounding the effects of soils, location, and
climate.

Keywords: height growth; A horizon soil features; weather variables; Pinus radiata.

INTRODUCTION
Hunter & Gibson (1984) described a multiple regression model to predict site index

(mean-top-height corresponding to the quadratic mean of the largest 100 stems/ha by
diameter at age 20) in Pinus radiata stands in New Zealand where the predictor variables
were a combination of climatic, nutrient, and soil factors. The database from which the model
was constructed consisted of 299 permanent sample plots from throughout New Zealand.
Plots were chosen in which the growth data straddled age 20 and no thinning had taken place,
or if there had been thinning it had occurred at least 5 years before sampling. In each plot,
10 pits were excavated with spade and auger. Litter depth and A horizon depth were
measured in each pit, and soil samples were collected from the horizon for analysis, together
with a pedological description based on the methods of Taylor & Pohlen (1970).

In this study the data were re-examined. The soils were re-classified and assigned to
follow 10 major orders. Multivariate statistical analyses were addressed to the majority of
these (as well some sub-orders) mainly using chemical concentration data acquired from the
A horizon as the exploratory variables. A major objective of this study was to ascertain the
degree of separation of these soil classes — to what extent are they independent or unique?
A second objective was to isolate and rank the major discriminating variables. Which soil
constituents contribute most to separating the classes? Which contribute little separating
power? In addition, attempts were made to construct regression models to demonstrate
relationships between the A horizon soil variables (together with climate and environmental
variables) and stand height growth. Statistical details of these predictive equations are
presented and the results are discussed.

SOIL ORDERS
Soils are generally identified and allocated to classes according to the characteristics of

the entire soil profile. Use is made of diagnostic horizons, soil materials, profile forms, and
other features (Hewitt 1998).

In this study the soils were grouped according to the New Zealand Soil Classification
(Hewitt 1998). The classification recognizes 15 Orders at the highest level, subdivided into
Groups and Subgroups. There are 10 Orders in the data here but two, Gley soils and Podzols,
were insufficiently represented and were not included in the study. This left the following
Orders: Ultic, Allophanic, Pumice, Granular, Pallic, Brown, Recent, and Raw soils. These
can be briefly described as follows. (The figures in parentheses following each description
are the number of sample plots assigned to each soil Order.)

Allophanic soils (ALLOPHANIC) occur mostly in North Island volcanic ash, and in
weathering products of volcanic rocks. The soil matrix is dominated by the clay minerals
allophane, imogolite and ferrihydrite. They have high phosphate retention properties.
They provide a good rooting medium but are sensitive, with a pronounced loss of
strength on disturbance. They are generally well drained with stable structure and are
of low fertility. (37)
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Brown soils (BROWN) are the most frequently occurring soil order in New Zealand. They
occur where summer dryness is uncommon and they are usually well drained. They have
stable topsoils and are of moderate fertility. Some have allophanic properties. (37)

Granular soils (GRANULAR) occur in the northern part of the North Island. They are
predominantly derived from strongly weathered volcanic ash. They have a limited
rooting depth and are slowly permeable. Although topsoil structures are strongly
developed, workability after heavy rain is limited. Phosphate retention is high and
nutrient reserves are generally low. (7)

Pallic soils (PALLIC) occur in low rainfall areas with droughty summers and moist winters.
The high-density subsoils, on which water may perch, often restrict rooting depth. (9)

Pumice soils (PUMICE) occur in relatively young, sandy or pumiceous volcanic ashes of
the central North Island. They are deep rooting soils, are well drained, but have low soil
strength when disturbed and therefore their erosion potential is high. Some welded
subsoils occur, particularly in southern Kaingaroa Forest, where in situ dense subsoils
form a root barrier. Nutrient levels are low. (113)

Raw soils (RAW) lack distinct topsoil development and include young dune sands and
recently eroded steep slopes. Generally they are of low fertility particularly with respect
to nitrogen. (40)

Recent soils (RECENT) occur in young landscapes, including alluvial floodplains, unstable
steep slopes, and slopes mantled by young volcanic ash. In this study weakly developed
dune soils are also classed in this order. These soils show weak soil development and,
except on steep slopes, they have deep rooting potential and good drainage. (48)

Ultic soils (ULTIC) are common in the northern North Island, and in the Wellington,
Marlborough, and Nelson areas. They are strongly weathered soils with clayey subsoils.
Generally they are acid soils with low nutrient levels and slow permeability. (8)

For three Orders we subdivided the data to Group level, as follows:

Recent soils, to Sandy Recent soils (RECENT) (27) or Recent other Groups (RECENT(O)).
(21)

Brown soils, to Orthic  Brown soils (BROWN) (20) or Brown other Groups (BROWN(O))
(17)

Pumice soils, to Orthic Pumice soils (PUMICE) (102) or Impeded Pumice soils
(PUMICE(I)) (11).

The 11 divisions so formed are referred to in this paper as the Soil Classes.

“A” HORIZON SOIL DATA
The following soil variables were available for analysis, taken very largely from the A

horizon (for 17 plots, mainly representing Raw soils, an A horizon was judged not to exist.
For these, the topmost horizon available was substituted).

Average depth of the A horizon (cm) (DH)
Acidity (pH)
Percentage organic carbon (C
   and total nitrogen (N)
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Olsen and Bray phosphorus (ppm) (OP and BP)
Bray extractable calcium (m.e.%) (Ca)
   magnesium (m.e.%) (Mg)
   and potassium (m.e.%) (K)
Silt plus clay (%) (SC)
Average resistance (kg/cm2) (R)

The basic data for each soil group are summarised in Table 1. Pearson correlations for
these variables (pooled over all soil classes) show relatively few meaningful associations.
Organic carbon percentage is strongly correlated to total nitrogen (r = 0.88) and the silt and
clay percentage is clearly correlated to organic carbon, total nitrogen, and pH (r = 0. 59, 0.67,
and –0.56 respectively). The Bray-extractable cations potassium, calcium, and magnesium
are correlated to each other (r = 0.65, 0.54, and 0.59 respectively) and logically Bray-
phosphorus is related to Olsen-phosphorus (r = 0.71), but all other correlations are less than
0.5, with the big majority of variables being virtually independent.

STATISTICAL BACKGROUND
The data were explored mainly by the statistical multivariate technique of canonical

discriminant analyses (Mardia et al. 1979). Linear combinations

Z = a1Y1 + a2Y2 + a3Y3 + … + apYp (1)

are formed, where Z is called a canonical variable, Y1 to Yp represent the A horizon soil
variables listed above, and the ai are coefficients. The ai are calculated in such a way that the
maximum possible multiple correlation between the soil classes and Z is achieved. A series
of Zs become available, each maximally correlated to the groups but independent of each
other. The first canonical variate has the highest correlation, followed by the second and so
on. The proportion of total variation accounted for by each combination can be estimated.
Each successive canonical variate can be tested by the hypothesis that it is equivalent to zero.
In practice it is useful if only the first one or two are required, and they account for a large
proportion of the total variation. Canonical discriminant analysis essentially reduces
dimension and highlights between-group differences (if present). Canonical functions are
very similar but nevertheless distinct from classical discriminant functions (Fisher 1936, or
Rao 1973) whose purpose is to allocate samples of unknown origin optimally to a set of
specified groups.

METHODS AND RESULTS

The data were analysed mainly by utilising the PROC DISCRIM option of the statistical
package, SAS. A test of the hypothesis that the class covariance matrices were identical was
rejected (p < 0.0001), as measured by an approximate Chi-squared test (Morrison 1976). This
strongly suggested that the various soil classes have heterogeneous variances — that is, some
soil classes are more variable than others.

No less than six significant (p < 0.0001) canonical axes emerged. However, the first three
axes explained 93% of the variation of which the first alone accounted for 72%. The axes are
(the four largest coefficients by absolute value are highlighted):
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Z1 = 2.33SC – 0.35N + 0.45C – 0.17BP + 0.27OP + 0.79DH + 0.13pH + 0.16K
– 0.15Ca – 0.15Mg + 0.04R (2a)

Z2
 
= – 0.76SC – 0.77N + 1.47C + 0.26BP + 0.27OP + 0.88DH + 0.43pH + 0.41K

– 0.39Ca – 0.45Mg – 0.18R (2b)

Z3 = – 0.71SC + 1.96N – 0.49C – 0.04BP – 0.21OP – 0.17DH + 0.23ph – 0.02K
+ 0.18Ca – 0.29Mg + 0.13R (2c)

The terms have been defined in the section on A horizon soil data.

The first (and major) axis 2a separates the soil classes very largely through the percentage
of silt plus clay present and, to a lesser extent, through the A horizon depth. The second axis
2b is dominated by the effects of organic carbon percentage but also suggests an interaction
of total carbon percentage and A horizon depth against nitrogen and silt plus clay percentage
levels. The third axis 2c is very substantially a direct effect of total nitrogen.

The mean Z scores for the first two canonical variates for each soil class were calculated
and are plotted in Fig. 1. The corresponding circles represent 95% confidence regions (see
Mardia et al. 1979, p. 344). (Note that the axes utilise standardised variables with a mean of
zero and standard deviation of one and so the data given in Table 1 are not directly
comparable.) The various radii reflect the different replication available for each soil class.
The various soil classes split into two discrete clusters are shown in Fig. 1, with Raw soils
and Sandy Recent soils spatially very distant from the rest of the soil classes. Within the
larger cluster, two smaller groupings are evident — (a) Impeded Pumice, Pumice, Brown,
and Allophanic soils, and (b) Recent, Ultic, Pallic, Orthic Brown, and Granular soils,
respectively. Orthic and Granular soils are virtually identical, as too are Pallic and Ultic soils.
Conversely, there is some evidence of Impeded Pumice soils differing from Orthic Pumice
soils.

FIG. 1–Plot of the first and second canonical means for the 11 soil classes
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A set of discriminant functions based on a squared distance measure (Rao 1973) were
constructed, but individual class dispersion matrices were utilised rather than a single pooled
variance-covariance matrix. From these, the percentages of data correctly allocated to their
parent soil class were calculated (Table 2). Overall these percentages reflect an excellent
allocation rate, with only the Brown and Recent soils showing a higher degree of variation.

TABLE 2–Percentage of data correctly allocated to their respective soil class
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Allophanic 92 Impeded Pumice 100
Brown 59 Raw 74
Orthic Brown 90 Recent 66
Granular 100 Sandy Recent 96
Pallic 100 Ultic 100
Pumice 77

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

PREDICTION OF MEAN TOP HEIGHT
The construction of yield models for mean top height (average height of the largest 100

trees/ha by diameter at breast height) required five of the soil classes to be dropped because
there was insufficient replication to test for lack of bias. Thus, this section of the study is
limited to Allophanic, Orthic Brown, Pumice, Raw, Recent, and Sandy Recent classes.

The growth data are copious with over 2800 growth records, the majority of which,
however, represent repeated measures in time on the same sets of trees. Such data are clearly
auto-correlated. This can cause tests of hypotheses in regression analyses to be compromised
through spuriously deflated standard errors (West et al. 1984; Woollons 1998). Accordingly,
the data were reduced to only one growth measurement per sample plot, thus eliminating the
temporal dependence. The actual growth measure retained for each plot corresponded as
much as possible to the age when each plot was sampled for soil characteristics. This gave
an age range between 12 and 40 years. In contrast to Hunter & Gibson (1984), it was decided
to include sampling age as a predictor variable and model mean top height rather than site
index per se; preliminary analyses suggested several of the soil variables were somewhat
correlated with stand age.

Initial attempts to model stand top height in terms of stand (sampling) age and the
A horizon variables were not especially successful, their contribution appearing minimal.
Later, it was realized that this approach was too simplistic on at least two grounds:

(a) Other factors, climatic or topographical in nature, were likely to contribute to stand
height growth;

(b) Different factors may well contribute to height growth on contrasting soils.

Accordingly, it was decided to augment the soil data with the altitude data for each plot,
as well as adding climate data obtainable from the BIOCLIM database and program (Wahba
& Wendelberger 1980; Hutchinson 1984; Nix 1986). These data were not available to Hunter
& Gibson, who relied on simple extrapolated figures from nearest-neighbour weather
stations. Basic climate data available included mean annual rainfall (mm), mean estimated
wind speed (km/hour), and mean annual temperature (°C). BIOCLIM also provides
estimates of evaporation and solar radiation but we decided not to utilise these because they
are not measured at most New Zealand weather stations, and thus are likely to be poorly
estimated.
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However, attempts to build individual equations for each soil type quickly revealed other
problems. Only the Pumice group had substantial replication and the range of data available
for other soil classes tended to be very narrow, limiting the efficiency of regression analyses.
Attempts were made to put the classes into three bigger groupings as shown by the
discriminant analysis above, but these too were not entirely satisfactory. Finally, we returned
to a pooled model, but took especial care to check the goodness-of-fit of the equations for
each soil class.

To build the model, we invoked the PROC NLIN routine from the SAS statistical package.
The basic sigmoid log-reciprocal (Schumacher 1939) model

H = exp(β0 + β1 / T) (3)

where H = mean top height (m)
T = age (of sampling) in years
β0, β1  = parameters, estimated by non-linear least squares

gave a highly significant fit to the data, with a residual mean square of 16.96 and an
approximate (Ratkowsky 1990) multiple correlation R2 = 0.58. Plots of residual values,
however, showed the model to be badly biased with respect to several soil classes.

Progressively, other predictor variables (when justified) were added to the basic model
(3) until a new model emerged:

H = exp(β0 + β1 / T + β2Ialt + β3 rain + β4wind + β5 log(DH + 1)) (4)

where alt = stand altitude (m)
rain = mean annual rainfall (mm)
wind = average windspeed (km/hour)
DH = average depth of the A horizon

               I = a dummy variable: I = 0 if the soil class is Raw or Sandy Recent; I = 1
otherwise

and β0 = 4.0402  β1 = –15.7394  β2 = –0.000107  β3 = 0.000075  β4 = –0.0190  β5 = 0.0624

All the coefficients were significantly different from zero, as judged by approximate 95%
confidence limits. The residual mean square was 9.33, an increase in precision of 45%
relative to (3), and the approximate R2 value was = 0.77. Considerable care was taken to
ensure that other functional forms of (4) did not give a lesser error mean square, or that other
transforms of the predictor variables gave superior predictive ability. We also explored
whether the canonical variate scores from 2(a) to 2(c) represented relevant predictor
variables, but none were significant. The single most-effective predictor variable (aside from
sampling age) was depth of the A horizon, followed by wind, rain, and altitude. A histogram
of the residuals from Model (4) for each soil class is given in Fig. 2; predictions are
substantially unbiased for all the soil classes.

To utilise Model (4) effectively it is important to input correct predictor values for a
specific soil class. The model may well behave erratically if inappropriate inputs are entered.
These average figures are given in Table 3; the values in parentheses are standard deviations.

DISCUSSION
The canonical discriminant analysis is very efficient in separating the various soil classes

and helps considerably in understanding the A horizon variables that are important in causing
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FIG. 2–Histogram of the residuals from Model (4) for the various soil classes

TABLE 3–Predictor variables for the modelled soil classes (standard deviations in parentheses)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
  Soil class Altitude Annual rainfall Wind A-horizon depth

(m) (mm) (km/h) (cm)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Allophanic 315 (138) 1907 (319) 12.5 (1.5) 13.0 (4)
Brown 210 (105) 1781 (248) 12.4 (1.4) 10.0 (5)
Pumice 384 (122) 1587 (208) 7.9 (1.5) 15.0 (4.5)
Raw 77 (84) 1203 (267) 10.8 (1.5) 1.3 (1.2)
Recent 285 (115) 1600 (349) 12.6 (2.4) 11.0 (5)
Sandy Recent 60 (72) 1255 (288) 10.7 (1.7) 5.1 (5)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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these differences. We do not, however, suggest that similar analyses should become standard
methods for classifying soils. Soils are a product of soil-forming factors: parent material,
climate, topography, vegetation, and time. The A horizon characteristics represent only one
facet of a complex system.

The major separating variables are logically the silt plus clay percentage, the A horizon
depth, and percentages of organic carbon and total nitrogen. The silt plus clay percentage
expresses important soil physical and chemical characteristics for long-term tree growth.
Clay and silt enable the soil profile to hold water. Dominance of the clay fraction also
influences the penetrability of the soils, and the propensity of the soil to become anaerobic
under conditions of poor drainage. Soil physical properties as informed by the silt plus clay
percentage can be modified by the presence of soil organic matter (SOM) and here
characterised by soil carbon and soil nitrogen concentrations. The presence of SOM
influences the soils’ air and water content by providing for good soil aggregation, acting as
a malleable soil-cementing agent. Soil depth is important in forestry as tree roots explore for
nutrients over decades compared with months for agriculture, and in doing so can make
effective use of nutrients present in low concentrations. The Pumice soils, with their
relatively low soil nitrogen status compared with the Allophanic and Brown soils, have soil
depth to compensate.

Whereas the carbon : nitrogen ratio is important in agriculture as the determinant of
nitrogen availability (mineral nitrogen), the carbon : nitrogen ratio is less important in forest
soils than the soil nitrogen content as trees have the ability to access the soil nitrogen pool
through mycorrhizal symbioses competing directly and successfully with the soil microflora.

The height prediction formula is noteworthy largely for containing environmental
variables at the expense of soil characteristics; in particular, the absence of phosphorus might
seem surprising. In fact, the Hunter-Gibson dataset was deliberately constituted with plots
where phosphorus fertiliser was not required for maintaining tree nutrition and, more
generally, the majority of the forests sampled were thrifty and generally devoid of major
nutrient deficiencies. Approximate critical soil nutrient levels below which tree growth may
be impaired are given in Table 4. A comparison of these levels to those in Table 1 shows that
most of the soil class values are well above the threshold standards. These might well explain
the lack of soil variables in the height model.

From a graphical representation of the data, it seems there was no significant relationship
between Bray-extractable phosphorus and foliar phosphorus. It is therefore not surprising

TABLE 4–Approximate critical values for various soil nutrients
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
 Nutrient Critical Reference

soil value
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Nitrogen 0.1% Hunter et al. (1986)

Phosphorus 5–12 µg/g Ballard et al. (1971); Ballard (1978)

Potassium 0.2–0.4 cmol/kg Ballard et al. (1971); Ballard & Pritchett (1976);
Ballard (1978)

Calcium Not determined Ballard et al. (1971)

Magnesium 0.7 cmol/kg Ballard (1978); T.Payn & S.Olykan (pers. comm.)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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that Bray phosphorus is not a significant factor here in the relationship between tree height
and soil factors. This is not to say that phosphorus is unimportant as a driver of growth; it is
important, but Bray extraction is not a good measure of the soils’ capacity to supply
phosphorus in situations (as here) where it is not limiting growth.

The lack of statistical relationships between pine growth and extractable cation status is
also not surprising. The cation pool represents a “static” measure of availability, more related
to short-term than to long-term measures. For pine plantations, cation flux should be more
related to availability than cation pools. Soil pH can vary dramatically across the New
Zealand pine plantation estates, from as low as pH 3.6 on West Coast pakihi soils to around
pH 5.5 on the pumice soils, and to pH 7 on soils derived from limestone. At the higher pH
values, iron chlorosis can be a problem but apart from pH-induced nutritional problems at
high pH, pH level per se does not affect tree growth.

It is of interest that increasing windspeed has been shown here to have a significant
influence on height growth, with higher windspeeds producing shorter trees. Wind is known
to affect tree growth and shape through a variety of mechanisms (Grace 1977), not all of
which are well understood. Wind is also an important factor in the energy and water balance
budgets of tree canopies. With increasing windspeed, boundary-layer resistance decreases
and, where other factors do not limit stomatal conductance, transpiration or evaporation from
wet surfaces also tends to increase. This might imply that increasing windspeed should
increase productivity. However, enhanced evapo-transpiration also increases soil moisture
deficit. Therefore, the relationship between wind and growth is not straightforward. To fully
explore the observed relationship between wind and height growth, more detailed analysis
using site-specific data would be required.

This study was based on a dataset that is probably unobtainable today. The data were
gathered for the objective of isolating nutrient, soil, and climatic factors that contribute to top
height (at age 20) P. radiata production in New Zealand. When first encountered this may
appear reasonably straightforward. In hindsight, we believe the most important finding in
this study is that, in fact, the objective is very difficult, if not impossible to achieve, at least
not without a degree of confounding. We have not attempted to compare our equation to that
of Hunter & Gibson for several reasons. The datasets are not comparable; some measurements
have been lost, and the climatic data used here were not available 20 years ago. Moreover,
the response variables are not compatible.

Because P. radiata stands are established on a variety of soils of greater or lesser fertility,
we initially wanted to build a set of models for each of the major soil groupings, anticipating
that different factors could well govern height growth on contrasting soil classes. In the event
we have resorted to a pooled model because ultimately there was no choice. Any empirical
model depends upon a quantity of data to provide an adequate estimate of experimental error.
For several of the soil classes, there were simply insufficient growth plots to contemplate
individual models. Some soils tend to be tightly located in space so that the climatic and
topographical variables are near constants. Obviously, it would have been better to secure
more data for some classes but this did not occur. Adoption of the pooled model is not ideal.
It is conceded that this action may have masked to some extent the true effects of soil and
climate, and their influence on height growth. On the other hand, spatially (and within most
of the soil classes) the sample plots are fairly well spread. This gives some confidence that
the confounding of soil and climate should not be severe.
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The height prediction equation we have constructed has been shown to be reasonably
unbiased over the soil classes. For the reasons we have outlined earlier, we believe the
predictor variables to be very logical, and plausible from both statistical and physiological
viewpoints. Doubtless, however, there will be some P. radiata forests where the model will
not perform well or the predictor variables are not relevant. These points lead us to emphasise
that Equation (4) is presented neither as a mechanistic formulation explaining P. radiata
height growth nor as a global predictive tool. It is operable for the soil types listed above and
no more. The dummy variable is used in conjunction with altitude since it is essentially a
constant near to zero for the Raw soils and Sandy Recent soils. Usage with all the soil classes
produces a spurious curvilinear relationship with top height.
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