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ABSTRACT 
There are increasing requirements for forest management agencies to estimate not 

only wood volume for timber production, but also biomass accumulation and carbon 
sequestration rates of their forests for environmental purposes. The common methods of 
biomass estimation have been to develop allometric equations to predict the biomass of 
individual trees from diameter or both diameter and height. The biomass equations are 
usually based on small samples, especially for large trees, due to the time-consuming 
nature of destructive biomass sampling. Consequently, the predictive performance of 
biomass equations has been seldom evaluated. Most forest management agencies do, 
however, have reliable volume estimates that are based on large samples. Converting 
stem or stand volume estimates, that are already available in forest inventory and growth 
and yield systems, to biomass seems to be the most convenient and reliable way to 
estimate forest biomass over a large management area. Adopting this approach, we 
developed a system of additive equations for converting stem volume into four biomass 
components (stemwood, bark, branches, foliage) and total above-ground tree biomass 
using data for two Australian tree species as an example. To correct log transformation 
bias and at the same time maintain additivity among the component equations, we 
proposed a regression-based bias correction factor and simultaneously estimated the 
biomass correction factors for the component equations. The distributional properties of 
the error in stem volume prediction were incorporated in stochastic simulations of the 
system of equations to determine the confidence bands of the biomass conversions. Such 
results would provide a clear indication whether the required precision of biomass 
prediction is met for a particular objective of investigation and, if not, where improvements 
can be made. 
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INTRODUCTION 
Biomass estimation has long been a predominant component of studies on forest 

productivity and nutrient distribution (e.g., Ovington 1957; Whittaker 1961; Attiwill et al. 
1978; Feller 1980; Gosz 1980; Turner & Lambert 1983; Adams & Attiwill 1984; Sprugel 
1984; Birk & Turner 1992; Wang et al. 1995; Santa Regina 2000). Estimating tree and stand 
biomass for calculating biomass energy, carbon storage, and carbon sequestration rates of 
forest stands began more recently (Cooper 1983; Grierson et al. 1992; Lovenstein & Berliner 
1993; Hall 1997;Laiho&Laine 1997; Nelson et al. 1999). The common methods of biomass 
estimation have been to develop allometric equations using log transformed data to predict 
the biomass of a tree and its components such as stem wood, bark, branches, and foliage either 
from diameter or from both diameter and height (Ter-Mikaelian & Korzukhin 1997; Parresol 
1999). The weaknesses shared by many reported biomass equations are (1) the lack of 
additivity among the component equations, (2) the existence of an inherent bias due to log 
transformation, and (3) the lack of confidence bands indicating their predictive performances. 

The lack of additivity means inconsistency in logic in the sense that the predicted values 
from the biomass equations of tree components do not add up to the predicted value from the 
equation for the total tree biomass (Kozak 1970). To overcome this problem, statistical 
procedures have been developed for forcing additivity among component equations, both 
linear (Kozak 1970; Chiyenda & Kozak 1984; Cunia & Briggs 1984, 1985; Parresol 1999) 
and non-linear (Reed & Green 1985). A critical review of these procedures has been given 
by Parresol (1999). The existence of an inherent bias in biomass estimation because of the 
use of logarithmic regression has been well-recognised (Baskerville 1972; Beauchamp & 
Olson 1973; Wiant & Harner 1979; Flewelling & Pienaar 1981; Sprugel 1983; Snowdon 
1991). However, corrections for log transformation bias are not attempted in many reports 
of biomass equations, even though the bias can be up to 30% or more for certain biomass 
components (Baskerville 1972; Snowdon 1991). The lack of confidence bands signifies 
deficiency in statistical estimates of the predictive accuracy of the biomass equations, 
particularly when applied to data independent of those used for estimating the equations. 
This deficiency stems largely from a problem of sample sizes. Because of the time-
consuming nature of destructive biomass measurements, samples for developing biomass 
equations are usually small, especially when large trees are involved (Feller 1980; Applegate 
1982; Ter-Mikaelian & Korzukhin 1997; Burrows et al. 2000). With small sample sizes it 
is difficult to evaluate the predictive accuracy of biomass equations. Consequently, predictive 
performance of biomass equations is seldom evaluated and reported (Madgwick 1971; 
Madgwick & Satoo 1975; Maia Araujo et al. 1999), particularly in comparison with the way 
that many forest growth models are tested (Vanclay & Skovsgaard 1997). 

Unlike biomass estimation, forest management agencies generally have more reliable 
estimates of tree and stand volume in their forest inventory and growth and yield systems. 
These volume estimates are from stem volume equations constructed from samples that are 
often many times larger than the sample size for biomass equations. Such samples usually 
cover a much wider geographical area, and so a greater range of stand conditions, than the 
biomass samples. In addition, reliable estimates of the predictive accuracy of stem volume 
equations are available for some species (Bi & Hamilton 1998). Stem volume estimates can 
be converted to biomass estimates with constant conversion factors (e.g., Whittaker 1961; 
Adams 1982; Grierson et al. 1992) or through regression equations relating biomass to stem 
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volume (Grundy 1995; Schroeder^ al. 1997; Usoltsev& Hoffmann 1997). Converting stem 
or stand volume estimates, that are already available in forest inventory and growth and yield 
systems, to biomass seems to be the most convenient and reliable way to estimate forest 
biomass over a large management area (Delcourt et al. 1981; Usoltsev & Hoffmann 1997; 
Schroeder et al. 1997). Accurate estimates of stem volume also provide the basis for more 
accurate estimates of biomass at a local level of management such as compartments. An 
added advantage of such an approach is that the distributional properties of the error in stem 
volume prediction estimated from large samples can be used in the evaluation of the accuracy 
of tree and stand biomass predictions. 

The objective of this study was to develop a general method to convert stem volume to 
biomass that overcomes the weaknesses shared by many allometric biomass equations. 
Small-sample data for two Australian tree species, Eucalyptus fasti gat a Deane et Maiden 
and Acacia dealbata Link, are used as an example. Firstly, we develop a system of equations 
to convert stem volume to biomass components with additivity. Then we propose a 
regression-based estimator for correcting log transformation bias while maintaining additivity. 
Furthermore, we demonstrate how the predictive performance of such a system of equations 
that is based on small samples can be more realistically evaluated through stochastic 
simulations that incorporate the distributional properties of the error in stem volume 
prediction estimated using large samples. 

STUDY AREA 
Glenbog State Forest on the south-east tablelands of New South Wales (36°50'S, 149° 

50'E), Australia consists of approximately 20 000 ha of wet sclerophyll eucalypt forests at 
altitudes ranging from 800 to 1200 m. The mean annual rainfall in the area ranges from 700 
to 1100 mm. The mean annual temperature is in the range 8.5°-13.5°C, and the mean 
minimum for the coldest month is -4° to 3°C. The most prevalent tall tree species in the area 
is E. fastigata which can attain heights of more than 40 m on favourable sites. It occurs either 
in pure stands or in association with other eucalypt species. The most commonly found small 
tree species is A. dealbata which can sometimes reach more than 30 m in height and form 
pure stands at confined locations (Bi et al. 2000). 

As part of a growth and yield project in the study area, more than 30 temporary plots were 
established in the regrowth forests of E. fastigata using a stratified random sampling scheme 
based on forest type (Bi & Jurskis 1996a). Most of these plots were in relatively pure 
E. fastigata stands. Nominal stand age, taken as the time elapsed since the last fire or logging 
which initiated the regrowth stand, varied mostly between 20 and 72 years among the sample 
stands (Bi & Jurskis 1996a). The plots were circular and varied in size according to stand 
density, but had a minimum radius of 15 m and contained at least 50 regrowth trees. Within 
each plot, diameter at breast height overbark (dbhob) and height of trees with dbhob greater 
than 10 cm were measured. A nominal age-class was recorded for each tree in one of the 
following categories: old tree, advance growth, or regrowth. Their morphological 
characteristics have been detailed by Bi & Jurskis (1996b). 

BIOMASS SAMPLING 
For biomass sampling, four plots were selected across the range of site productivity using 

the site productivity index derived by Bi & Jurskis (1996a) for these stands. A total of 15 
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regrowth and advance growth E. fastigata were destructively sampled across the diameter 
range of trees in the four plots. Diameter at breast height (ob) of the sample trees ranged from 
10.3 to 80.8 cm and height ranged from 9 to 45 m (Fig. 1). After felling, sectional 
measurements of overbark stem diameter and bark thickness were taken along the stem at 
1.5-m intervals for calculating overbark and underbark sectional volumes as described by Bi 
& Hamilton (1998). In addition, discs approximately 5 cm thick were cut at 1.3 m and at two 
to four relatively evenly spaced points along the stem, depending on tree size. The height 
above ground was recorded for all points where discs were taken. The discs were then taken 
back to the laboratory for determining the basic densities of sapwood, heartwood, and stem 
bark. 

0 20 40 60 80 

1 Anania dealbata 

oQ%> 

l — J — 1 

Eucalyptus fastigata 

o o o 

o° 

L_ . . j 

d 

20 40 60 80 

DBHOB (cm) 

FIG. 1-Height and diameter at breast height overbark (dbhob) of the sample trees. 

Diameter of all branches, either live or dead, was measured at about 5 cm from the forking 
point on the stem, and their height above ground level was recorded. Branches exceeding 
18 cm in diameter on large trees were treated as separate leaders. The diameter and the height 
of the forking point of each leader were recorded. Branch measurements were made on the 
leaders in the same way as on the main stem. After branch measurements had been made, 
the crown was divided into upper and lower crown using the height measurements of live 
branches. From each crown stratum, a random sample of between one and six live branches 
was taken, depending on the crown size. The foliage and twigs (<1 cm in diameter) were 
separated manually from each sample branch. Fresh weights of foliage, twigs, and branch 
wood were obtained using a field balance. A subsample of about 0.5 kg of leaves was taken 
from each sampled branch. Subsamples of twigs and branches were taken initially from each 
branch, but there was little variation in moisture content among the branches of a tree and 
so, to expedite the sampling process, a subsample of twigs weighing about 0.5-0.7 kg and 
a subsample of branch wood with bark weighing about 2-3 kg were taken from each tree. All 
dead branch samples were cut off the stem and weighed in the field, together with the broken 
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pieces collected from the floor. Depending on the number of dead branches present, a 
subsample of branch wood weighing about 1-3 kg was taken. For A. dealbata, 24 trees were 
sampled across its diameter range in the four plots. Diameters at breast height (ob) of the 
sample trees ranged from 10 to 37 cm and height ranged from 10 to 31 m (Fig. 1). Field 
measurements were taken in the same way as for E. fastigata, but without partitioning the 
crown. All dead branches were collected and weighed, and a subsample of dead branches 
weighing about 1-2 kg was taken to the laboratory. 

All subsamples weighed in the field were oven dried in the laboratory at 70°C until a 
constant weight was reached, to determine the dry weight to fresh weight ratio. The total dry 
weight of foliage of each sample branch was obtained by multiplying the fresh weight of 
foliage by the dry:fresh weight ratio for foliage. The total dry weight of twigs and branch 
wood of the sample branches was calculated in the same way, and the sum of the two 
components was taken as the total branch biomass. To determine the total dry weight of 
foliage and of branches for a tree, three regression equations were developed relating the 
biomass of foliage, live branches, and dead branches to branch diameter on log scales by 
pooling subsamples from all trees. Then for all non-sample branches, the biomass of foliage 
and branch wood was calculated from branch diameter using the regression equations. Log-
transformation bias was corrected using a regression-based bias correction factor (to be 
described in detail later in this paper). The total foliage biomass of a tree was calculated as 
the sum of foliage dry weight of all live branches of the tree. The total branch biomass of a 
tree was calculated by summing the dry weight of all live and dead branches of the tree. The 
basic density of sapwood and heartwood, and the bark density of disc samples were 
determined (in grams per cubic centimetre) by cutting small cube samples from each disc and 
using water immersion techniques similar to that described by Feller (1980) and Bradstock 
(1981). This was done several days or more after the disc samples were taken in the field 
because the foliage and branch samples were dried and weighed first in the laboratory. As 
a reviewer correctly pointed out, because the shrinkage during this period was not taken into 
account, application of the basic density to green stem volume may over-estimate stem 
biomass. Overbark and underbark sectional volumes were calculated for both species as 
described by Bi & Hamilton (1998). In addition, sapwood and heartwood volumes in each 
stem section were also calculated. The heartwood and sapwood biomass of each stem section 
was first calculated by multiplying the heartwood and sapwood volumes of the section with 
the corresponding basic densities. The total biomass of stem wood of each stem section was 
then calculated as the sum of the heartwood and sapwood biomass of that section. The 
biomass of stem bark was calculated in the same way. Since E. fastigata is a rough bark 
species, overbark measurement with a tape will measure the "apparent" volume rather than 
true volume, and application of bark density measured using water immersion techniques to 
"apparent" bark volume may over-estimate bark biomass. Total stemwood and bark biomass 
for the whole tree was calculated as the sum of sectional stemwood and bark biomass from 
ground to tip. 

Model Specification, Estimation, and Diagnostics 

A system of five equations with multiplicative error terms, cross-equation constraints on 
the structural parameters, and cross-equation correlation are specified to convert stem 
volume to four tree biomass components and total tree biomass with additivity: 
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where Yj to Y5 represent stem wood, stem bark, branch, leaf, and total tree biomass 
respectively (in kilograms), V is underbark stem volume (in cubic metres), /3b /32,- - - ,/̂ s are 
coefficients. The error terms can be expressed in matrix algebra notation as follows: 

£ =[£,,£2 ,£3 ,£4 ,£5r (2) 
The properties of £ are 

£(e) = 0 (3) 
and 

Cov(e) = E(ee') = 
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where £(£) and Cov(£) denote the expectation and covariance of £, G/7 represents the variance 
of £,, (i=l, ...,5), Gy represents the covariance between the error term of the /th and theyth 
equation, (j= 1 ,...,5), (8) denotes the Kronecker product, T denotes the number of observations, 
and lT is an identity matrix of order T. The random errors follow a multivariate normal 
(MVN) distribution, i.e., £ ~ Af(0,X). Taking logarithmic transformation on both sides of 
Equation (1), the system of equations becomes 

yx =(Jl+p2\nV+£l 

y2 = p3 + p4 In V + e2 

yi =P5 + Pe\nV+£3 

v4 = pj + /38 In V + e4 

y5 = ln(^V& + e^Vh + e&V* + ^ V & ) + £5 (5) 

where In denotes natural logarithm andyt• = lnF,. This system of five nonlinear equations can 
be written in a more compact form as: 

yi =/i(V,P) + e, 
v2 = / 2 (V ,P) + £2 

>'3 = / 3 (V ,P) + e3 

j 4 =/4(V,0) + £4 

tt =/5(V,P) + £5 (6) 
where P = IjSi,/^,...,/^]. The same coefficient vector appears in all equations so that the 
coefficients can be shared by two equations as imposed by the cross-equation restrictions on 
the structural parameters for ensuring additivity. 

Clearly, this system of equations falls into the framework of seemingly unrelated 
regressions (SUR) of Zellner (1962). Although Zellner's SUR estimator was first derived for 
a system of linear equations, it can be extended to a system of nonlinear equations such as 
the system specified above (Gallant 1975; Srivastava & Giles 1987; Judge et al. 1988). When 
the random errors follow a multivariate normal distribution, a system of nonlinear equations 
can also be estimated by maximum likelihood estimation. The maximum likelihood 
estimators for the coefficients and the cross-equation covariance matrix, X, have been given 
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in detail by Judge et al. (1988) for such systems of nonlinear equations. The maximum 
likelihood estimator of the coefficients in our model (6) is 

arg min|5l = arg min 

p P 

where £̂ £y-

£ j £j £ j £2 £ 1 £3 £ j £4 £ j £5 

^2^1 ^2^2 ^2^3 ^2^4 ^2^5 
£ 3 £ l £ ' 3 £ 2 £^£3 £^£4 £^£5 | | ( 7 ) 

£ ^£\ £4^2 ^4^3 £ 4 ^ 4 £4^5 

£^£ j £5^2 ^5^3 ^ 5 ^ 4 ^ 5 ^ 5 

[y, -/-(V,P)]Ijy -^(V,p)]. The maximum likelihood estimator for J is S/T, 
where S is defined in Equation (7). Since the loss of degree of freedom is not taken into 
account, the estimator tends to under-estimate the true value of X- The estimation of the 
structural parameters is consistent and asymptotically efficient. 

The system of Equation (5) was fitted to the data for each species through the PROC 
MODEL procedure of SAS (SAS Institute Inc. 1988). Parameter estimates were obtained 
using both SUR and the maximum likelihood method. The two methods produced very 
similar parameter estimates. The approximate standard errors for the parameters from the 
maximum likelihood method were slightly larger. To be conservative and for the sake of 
parsimony, only the maximum likelihood estimates were reported (Table 1). The differences 
in branch and foliage exponents between the species largely reflected their differences in tree 
form. For each component equation, a generalised value of R2 was calculated to indicate the 
goodness of fit: 

R2=\ 

T 

•yd2 

I(v, 
(8) 

- y ) 2 

where y, and y, are the observed and predicted values of log transformed biomass, and 3; is 
the mean observed value of log transformed biomass (Table 1). The asymptotic estimates of 
across equation error covariance matrix in Equation (4) are 

TABLE 1-Parameter estimates and their asymptotic standard errors for the two species. Two values 
of R2 are shown for each component equation: one in logarithmic space calculated 
according to Equation (8) and the other (in brackets) in arithmetic space calculated after 
taking back transformation from logarithm. 

Biomass Parameters 
component 

Stemwood 

Stem bark 

Branch 

Foliage 

Total biomass 

ft 
ft 
ft 
ft 
ft 
ft 
ft 
ft 

Asymptotic 
estimate 

6.5342 
1.0370 

5.1351 
0.9303 

4.6038 
1.3072 

2.6209 
0.9379 

E. fastigata 

Asymptotic 
standard 

error 

0.0142 
0.0195 

0.0418 
0.0379 

0.0815 
0.0625 

0.0893 
0.0705 

R2 

0.997 
(0.989) 

0.984 
(0.975) 

0.935 
(0.404) 

0.925 
(0.727) 

0.994 
(0.954) 

Asymptotic 
estimate 

6.4241 
1.0091 

4.6649 
0.8213 

4.6511 
0.6456 

1.9507 
0.4672 

A. dealbata 

Asymptotic 
standard 

error 

0.0170 
0.0082 

0.0659 
0.0627 

0.0860 
0.0423 

0.2063 
0.0874 

R2 

0.999 
(1.000) 

0.951 
(0.878) 

0.818 
(0.793) 

0.623 
(0.667) 

0.992 
(0.994) 
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1 = 

0.0067 0.0094 
0.0094 0.0309 
0.0123 0.0109 
0.0031 -0.0072 
0.0100 0.0172 

0.0123 
0.0109-
0.2193 
0.1479 
0.0428 

for E. fastigata and 

0.0007 

1 = 

0.0001 -0.0012 
0.0001 0.0409 0.0086-
0.0123 0.0086 0.1549 
0.0007-0.0110 0.1020 
0.0005 0.0087 0.0341 

0.0031 
-0.0072 
0.1479 
0.1310 
0.0200 

0.0007 
-0.0110 
0.1020 
0.2156 
0.0234 

0.0100 
0.0172 
0.0428 
0.0200 
0.0190 

0.0005 
0.0087 
0.0341 
0.0234 
0.0099 

(9) 

(10) 

for A. dealbata. The diagonal elements of the asymptotic covariance matrices in Equations 
(9) and (10) showed that the asymptotic error variance of branch and foliage components was 
much greater than that of the stemwood and total biomass for both species. Consequently, 
the data points of stemwood and total biomass scattered more closely along the fitted lines 
than that of the branch and foliage biomass (Fig. 2). 

Further graphical examinations of the estimated systems of equations in relation to the 
data for both species suggested that specification of Model (5) was appropriate and there 
were no marked departures from homogeneous error variance for all biomass components 
for both species. Since the random errors were assumed to follow a multivariate normal 
distribution (MVN), i.e., £ ~ /V(0,X) and the estimated X was to be used in stochastic 
simulations later in the paper, tests for multivariate normality were carried out to detect 
significant departures from the MVN assumption. The tests were also to ascertain whether 
the estimated X provides an adequate summary of the interrelations among the error terms, 
a main objective of any tests for MVN as stated by Cox & Small (1978). Over 50 tests for 
assessing multivariate normality have been proposed (Looney 1995). However, there is no 
uniformly most-powerful test for assessing multivariate normality when the alternative 
distribution is unknown (Ozturk & Romeu 1992; Looney 1995). The multivariate skewness 
and kurtosis tests proposed by Mardia (1980) remain among the most powerful, general, and 
easy to implement (Ozturk & Romeu 1992). Mardia's tests of the residuals of the system of 
equations showed no significant departures from MVN at a significance level of oc=0.05 for 
both species. 

Bias Correction for a System of Additive Biomass Equations 

As given by Flewelling & Pienaar (1981), the correction for log transformation bias for 
a single equation may be written as: 

Yc=0Y=0exp(y) (11) 

where Yc is the estimated value of biomass after bias correction, Y = exp(jy), and y is the 
estimated value of log transformed biomass, exp represents the exponential function, and 0 
is the correction factor. Several estimators of 6 have been proposed (Finney 1941; Bradu & 
Mundlad 1970; Baskerville 1972; Teekens & Koerts 1972; Evans & Shaban 1976). They are 
generally based upon the sample variance (s2) of the log transformed biomass, y, as reviewed 
by Flewelling & Pienaar (1981). The accuracy of these estimators would naturally depend 
upon how well the population variance is estimated, and thus is also dependent on the sample 
size. However, in small samples typical of those used in biomass studies, the variance will 
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estimator which is the ratio of the arithmetic sample mean and the mean of the back-
transformed predicted values of log biomass. Since it is based on the mean, the ratio estimator 
is sensitive to extreme values (Snowdon 1991). This sensitivity represents a shortcoming, 
particularly for small samples containing few large trees such as those in this study. 
Furthermore, these existing correction factors were proposed for a single equation. Additivity 
among the component equations will not be maintained after bias correction when these bias 
correction factors are applied separately to each component equation of a system of additive 
equations as shown below: 

Yic = 84Y4 

Y5l = 05Y^ (12) 

where Yic (i=l ,...,5) is the estimated value of biomass after bias correction for the biomass 
component corresponding to Yh Y{= exp(y,), and y, is the estimated value of log transformed 
biomass as in Equations (5) and (6). 

To reduce bias and also maintain additivity, we propose to use a regression-based 
estimator of the bias correction factor, 6, for a single equation at first, and then to 
simultaneously estimate the bias correction factors for the components. For a single equation 
such as the component equation for total tree biomass, the multiplicative error term can be 
expanded into additive terms as follows: 

Y5 = yy8*^ = Y5 [E(eE^) + eE** - E(eE^)] (13) 

Let 05 = £(<?e*5) and £5 = Y5(e
E** - 65), we have 

Y5 = 05Y5+t;5 114) 

where Y5 - exp(y5) is the predicted value of y5, treated here as a fixed regressor known 
without error, eE*5 is the associated multiplicative error term, £5 is the new additive error term 
with E(%5) = 0 and Var(t;5) = Y5

2Var(eE*^). It is obvious that the weighted least squares 
estimator of 05 is 

>r —X — in the sample case, where n is the number of sample trees. 
n Y5 

This weighted least squares estimator is equivalent to dividing both sides of Equation (13) 
with Y5. The weighted error term, (££*5 - 65), now has a zero mean and a variance equal to 
Var{e^^). The distribution of the weighted error term has the same shape as that of the 
lognormal variate eE*\ but obviously its location has shifted to the left by #5. In this case, the 
least squares estimator of 65 is still unbiased, although statistical inferences based on the 
assumption of normal distribution are no longer valid (Wackerly et al. 1996). 

In order to maintain additivity after bias correction, one may well suggest that the bias 
correction factors for the biomass components in Equation (12) be estimated through the 
following system of equations, using the seemingly unrelated regression estimator: 

Y2 = 62Y2 + <̂2 

K< 
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Y3 = 03Y3 + ^ 

Y4 = Q4Y4 + £4 

Y5 = Qx f, + 02Y2 + 03f3 + 64Y4 + £5 (15) 

Although this system of equations has cross-equation error correlations, they cannot be 
estimated through seemingly unrelated regression equations in the same manner as Model 
(5). In this system of equations, the component equation for total tree biomass is a linear 
combination of all other component equations. The variance and covariance matrix needs to 
be a positive definite matrix to preclude the possibility of any linear dependencies among the 
error terms in the system of equations (Srivastava & Giles 1987). 

To overcome this problem, the bias correction factor for total tree biomass, 05, in Equation 
(12), was estimated in a single equation at first to obtain the estimated value of total tree 
biomass with bias correction, Y5c. Then Y5c was used as a cross-equation constraint to obtain 
the final estimates of bias correction factors for other biomass components as follows: 

Y2 — 62Y2 + 2̂ 

r3 = e^3 + & 
Y4 = 04Y4 + £4 

Y5(. = 0!?, + 02Y2 + 6>3y3 + 04Y4 + & (16) 

The system of Equations (16) was fitted to the data for each species through the PROC 
MODEL procedure of SAS (SAS Institute Inc. 1988) to obtain parameter estimates using the 
nonlinear weighted least squares method and Yf] (i = 1 - 5) as weights as described above. 

The estimated bias correction factors for the component equations are 

Yu.= 1.028K, 

Y2c= 1.058?2 

Y3c= 1.076?3 

Y4c= \A06Y4 

Y5c= 1.028K, + 1.058F2+ 1.076F3+ 1.106F4 (17) 

for E. fastigata and 

Yu.= 1.006?, 
Y2c= 1.031 Y2 

f v = I.OOOP3 
Y4c= 1.080f4 

Y5c= 1.006?! + 1.031 Y2+ 1.000K3+ 1.080r4 (18) 
for A. dealbata (Fig. 3). The estimated bias correction factor for F3, the branch component 
of A. dealbata, was initially 0.986, slightly less than 1, and so constraint was arbitrarily 
imposed so that all estimated factors were greater or equal to one. 

Stochastic Simulations 
Since the equations for converting stem volume to biomass are based on small samples, 

it is difficult to obtain any reliable statistics on their prediction accuracy in the way shown 
by Bi & Hamilton (1998), Bi (1999), and Bi (2000) for volume and taper functions using large 
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samples. For a tree with a given diameter and tree height, the predicted stem volume will have 
to be used as the independent variable in Equation (5) to predict biomass, unless the true stem 
volume calculated from taper measurements is available. Thus, in practice the error in stem 
volume prediction will be an additional component of the error in biomass estimation, as 
shown below: 
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Yi 

Y2 

Y, 

Y4 

Y5 

= /l(V>+£ l ,) 'Vl 

= e^(V+ex)
P*e^ 

= ePHV + £,.) V ^ 
= e,iT(V+ev)

fi«e£* 
= C/|(V'+e,)/J2 + e^ (i>+e, )«• + <A (V+e . ) * + <A (V+e.) fy<A 

where Vis predicted total stem volume from a volume equation and £v, represents the error 
in stem volume prediction. Since volume equations are often developed using large samples, 
reliable estimates of the distributional properties of £v are available in some cases (Bi & 
Hamilton 1998). The errors in biomass prediction can be more realistically evaluated by 
taking into account both £v and £ in Equation (19) through stochastic simulation. 

The volume equation iovE.fastigata developed by Bi & Hamilton (1998) using taper data 
from 949 sample trees is as follows: 

V = V + £y = 0.2195D2H + £v R2 = 0.989 (20) 

where D is diameter overbark at breast height (in metres), H is total tree height (in metres), 
and R2 is as defined in Equation (8). The selection of equation form, the determination of the 
weight function, and model diagnostics have been given in detail by Bi & Hamilton (1998). 
The weight function was (D2//)"9(); the weighted error term followed a normal distribution 
with zero mean and a standard deviation of 0.0224 as given by the root mean squared error 
of the weighted least squares regression. From these results, one can easily show the 
distribution of the error term ev in Equation (20) in terms of V: £v,~ N(0,o2(V)), where (J2(V) 
= [0.0224( VI 0.2195)() 9()]~- Through the same procedures, a volume equation for A. dealbata 
was developed using the best available taper data from a small number of 24 sample trees 

V = v + ev = 0.3458D2// + £v R2 = 0.984 (21) 

where ev ~ N(0,a2(V)) and o\V) = [0.04357(V/ 0.3458)145]2. 

To obtain the confidence limits for the error in biomass prediction for the two species, 
stochastic simulations of the two error components £v and £ in Equation (19) were carried out 
over a range of V. For E.fastigata, 400 values of V ranging from 0.025 to 10 m3 with an even 
increment of 0.025 were used in the simulation; for A. dealbata, 150 values of Vranging from 
0.01 to 1.5 m3 with an even increment of 0.01 were used. For each value of V, 1000 random 
samples were generated for £v from the univariate normal distribution N(0,(J2(V))- In 

addition, 1000 sets of 5 random variates were generated for £ from the multivariate normal 
distribution N(0,2) through the Cholesky decomposition of the estimated variance and 
covariance matrix, X given in Equations (9) and (10) for the two species. The algorithm for 
statistical computing was given in detail by Tong (1990). For each value of V, the mean, the 
2.5th, and the 97.5th percentiles of the 1000 estimates of each of the five biomass components 
were taken as the predicted value of the stochastic simulations and the 0.95 confidence limits 
of prediction error at that point. The confidence limits for all points over the range of V 
collectively formed confidence bands for the estimated biomass components. To evaluate 
the relative width of the confidence bands, the difference between each of the confidence 
limits and the mean was divided by the mean to obtain percentage confidence bands. In 
addition, the stochastic simulations were repeated without incorporating £v, i.e., letting 
£v = 0, to see the magnitude of change in the width of the confidence bands if stem volume 
is measured instead of predicted. 
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As well as the confidence bands for the error of biomass prediction, biomass distribution 
in terms of the percentage of total above-ground biomass allocated to each biomass 
component and the 95% confidence limits were also obtained from the simulations. The 
mean percentage of total biomass allocated to each of the four components and the associated 
95% confidence interval were also calculated and plotted against stem volume. The 
component equation for stemwood biomass, Yx = e^lV^2e£[, was divided by V on both sides 
such that Y\/V= e^{v2~ e£{, where Y\IV\s obviously the basic density of the stemwood for 
the whole stem, not individual stem sections. Since /32 - 1 is greater than zero for both 
species, this relationship showed how the basic density of stemwood increases with tree size. 
The mean basic density of stemwood and its 95% confidence interval were calculated and 
plotted against stem volume. 

The estimation of stemwood biomass is most precise among the four biomass components 
for both species, as shown by the relatively narrower 95% confidence bands (Fig. 4 and 5). 
The branch and foliage components are the least precisely estimated as shown by the much 
wider confidence bands. The width of the confidence bands largely reflects the values of the 
diagonal elements of the variance and covariance matrices for the two species in Equations 
(9) and (10). As expected, the confidence bands are not symmetrical due to the log normal 
distribution of the multiplicative error terms in Equation (19). The differences in the shape 
of the confidence bands between the two species are quite noticeable, particularly for the 
stemwood component and total tree biomass (Fig. 5). The relative confidence bands are 
generally wider for A. dealbata than f'or E. fastigata, apart from the branch component. For 
A. dealbata, the confidence bands for stemwood biomass and total biomass became much 
narrower when ev = 0. In comparison, the width of the confidence bands for the same biomass 
components for E. fastigata was also reduced when ev = 0, but to a much lesser extent. In 
addition to these differences, the shape of the confidence bands differed between the two 
species (Fig. 5). 

Biomass distribution varied with tree size and also between species (Fig. 6). The mean 
proportion of stemwood increased with tree size from more than 50% to 77% for A. dealbata, 
whilst that of E. fastigata decreased slightly with tree size from 71% to 67%. The mean 
proportion of bark decreased with tree size for both species, from about 17% to less than 12% 
for A dealbata and from about 24% to 13% for E. fastigata. The mean proportion of branch 
biomass decreased with tree size from about 30% to 11% for A. dealbata, whilst that of 
E. fastigata increased with tree size from 5% to 20%. The mean proportion of foliage 
decreased with tree size for both species, from about 4% to less than 1 % for A. dealbata and 
from about 2% to 1 % for E. fastigata. The confidence bands of the percentage biomass were 
relatively wide for the branch and foliage components. The mean basic density of stemwood 
increased with tree size for both species. However, the 95% confidence interval was much 
narrower for A. dealbata (Fig. 7). 

DISCUSSION 
There are several hundred native tree species in Australia (Boland et al. 1992), but 

allometric biomass equations are available for only a small number of species. Most of these 
equations are based on small samples that are confined to particular study sites within certain 
geographical areas. Consequently, the predictions from these biomass equations when 
applied to trees over a large geographical area may not have the required level of accuracy. 
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In comparison, stem volume equations are usually constructed using samples that are often 
many times larger than the sample size for biomass. Converting stem volume estimates, that 
are already available in forest inventory and growth and yield systems, to biomass estimates 
should provide more reliable estimates of biomass at a more local management level such 
as site class, compartments, or stands as demonstrated by Schroeder et al. (1997) and 
Usoltsev & Hoffmann (1977). Rather than using a constant conversion factor (e.g., 
Whittaker 1961; Adams 1982; Grierson et al. 1992), the conversions from stem volume to 
biomass can be achieved through a system of additive equations, as shown in this paper. 
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obtained from the stochastic predictions. 

a set of biomass equations (Kozak 1970; Chiyenda & Kozak 1984; Cunia & Briggs 1984, 
1985; Reed & Green 1985). The deterministic part of the model specification as in Equation 
(1) of this paper is similar to that reported by Reed & Green (1985) for demonstrating the use 
of a loss function in the estimation of the system of equations for predicting biomass from 
diameter with additivity. But the specification of the error terms is quite different. Multiplicative 
error terms are specified in this paper, while additive error terms were used by Reed & Green 
(1985). Further, the specification of the error structure in this paper explicitly incorporates 
the cross-equation error correlation, the correlation that naturally exists among biomass 
components of the same tree. Taking this correlation into account would result in more 
efficient estimation of the system of equations than non-linear OLS, and the gain in 
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efficiency can be expected to increase with sample size according to statistical theory 
(Zellner 1962; Srivastava & Giles 1987; Judge et al. 1988). In a recent review of tree and 
stand biomass assessments, Parresol (1999) showed an example of a system of linear 
equations, whose parameters were estimated by SUR with linear restrictions, that resulted 
in more efficient parameter estimation and additive predictions of biomass. Even under the 
constraint of additivity, the SUR estimator still achieved lower variance and was a more 
efficient estimator than other methods (Parresol 1999). This example clearly demonstrated 
that the SUR estimator is the method of choice for efficient parameter estimates and additive 
predictions of biomass. 

As with single biomass equations, log transformation bias also exists in a system of 
additive equations as specified in this paper. Although several estimators of the bias 
correction factor 6in Equation (II) have been proposed for a single equation (Finney 1941; 
Bradu & Mundlak 1970; Baskerville 1972; Teekens & Koerts 1972; Evans & Shaban 1976; 
Snowdon 1991), none will maintain additivity among the component equations when 
applied individually to each component equation in a system of additive biomass equations. 
The regression-based bias correction factor and the procedures for its estimation proposed 
in this paper represent the first attempt to correct log transformation bias and maintain 
additivity for a system of biomass equations. Like those estimators for a single equation, the 
performance of the regression-based bias correction factor is also data-dependent. Detailed 
statistical properties of the regression-based bias correction factor and the estimation 
procedure for a system of additive equations need to be examined in relation to sample size, 
sampling methods, and other characteristics of the sample data in future research. 

Apart from efficient estimates and additive predictions of biomass, using a system of 
additive equations has an added advantage in that the estimated cross-equation error 
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covariance matrix can be used to evaluate more realistically the precision of biomass 
prediction through stochastic simulations. The results provide a clear indication as to 
whether the required precision of biomass prediction is met for a particular objective of 
investigation and, if not, where improvements can be made. For example, the confidence 
bands for stemwood and total biomass were much narrower for A. dealbata when stem 
volume V was known (Fig. 4 and 5). This reduction in the width of the confidence bands 
indicated that there is much to be gained in the precision of biomass prediction by increasing 
the precision of stem volume estimates using a larger sample size for volume equations. So 
far, little such statistical information on precision has accompanied published biomass 
predictions. 
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