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ABSTRACT 

Hypothetical diameters of geometric solids are used to compare volume 
estimates when frusta are considered in turn to be paraboloidal, conoidal, or 
neiloidal. Comparison shows that only very small differences exist between 
estimates, that the traditional concept of a generalised tree shape has no bearing 
in this context, and that it is better to choose representative and repeatable 
measuring points along a stem at regular drops in diameter, if a reproducible 
and realistic index of volume is to be obtained. A procedure for taking sectional 
measurements is suggested. 

INTRODUCTION 

Much has been written about the approximate shape of trees or logs, and the 
merits of various formulae for calculating volume. Curiously, no recent text has 
emphasised the height accumulation approach which Grosenbaugh has expounded from 
time to time (e.g., in 1954 and 1966). The following comments in his 1966 paper 
(p. 449) certainly deserve mention, if not discussion, in text books published since 
1966 (e.g., Avery, 1967 and Carron, 1968). 

"Thus the traditional one-parameter conoid, paraboloid, and neiloid are merely con
venient instances in a continuum of short monotonic shapes. More or less convex or 
concave shapes are common, but differences are imperceptible when frusta are short, 
or when the two terminal diameters differ by 20 percent or less." 

If Grosenbaugh's claims can be substantiated, much more efficient and more 
representative methods of making sectional measurements could be evolved. 

One can consider a stem as a solid of revolution defined by a curve or portion of 
a curve revolving 360° about its own longitudinal axis. A general expression for the 
curves that define such tapering bodies is 

y2 = p xr 

where p = a constant 
y = radius of the stem or log at x 
x = distance measured from the top. 

The exponent r governs the shape of the curve and p its taper. For a cylinder, 
r = 0; for a quadratic paraboloid, r = 1; for a cone, r = 2; and for a neiloid, r — 3. 
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The volume of a solid may be calculated by integrating the curve of the required shape. 
If one further considers an individual frustum with large-end diameter D, small-end 
diameter d, and length, L, the volume v is 

TT/4 • L • (Dd + (D + (D - d)2/(r + 1)) (See Grosenbaugh 1966, fig. 4, page 450). 
This general formula reduces as follows, for a 

paraboloid, v = TT/8 • L • (D2 + d2); 
cone, v = 7T/12 • L • (D2 + d2 + Dd); 
neiloid v = TT/16 • L • (D2 + d2 + 2Dd). 

It can easily be shown that both Smalian's and Huber's formulae are equivalent 
to that of the paraboloid. It can also be deduced from the generalised curve that 

di2/(D-d)2 = ((L-1.)/L)r 

where di = diameter intermediate between D and d, at a point h distant from D. 

Experiment 1 
A simulation routine was run to examine differences in estimating volume from 

frusta of three curves in turn, a paraboloid, a conoid, and a neiloid. The values examined 
ranged from small-end diameters of 3in. (76.2mm) to 40in. (1016mm) and log lengths 
of multiples of 4ft (1.2m) between 4ft (1.2m) and 40ft (12.2m). Each small-end 
diameter was coupled with a large-end diameter from lin. (25.4mm) to 5in. (127mm) 
greater than itself. A small sample of the results has been converted to metric dimensions 
and is presented in Table 1, from which the salient features of the simulation can be seen. 

Table 1 shows that both the absolute and the percentage differences between a 
paraboloid and a conoid, and between a neiloid and a conoid are negligible when the 
end diameters differ by only 25mm, but steadily increase with successively greater 
differences in end diameters. The larger the small-end diameter, however, the smaller 
the difference in volume estimates from the various curves for the same difference in 
end diameters. 

TABLE 1—Differences in volume with paraboloidal, conoidal, and neiloidal shapes 

L 
m 

2 

10 < 

2 

10 • 

d D 
m m m m 

flOO 125 
100 150 
100 175 
100 200 
100 225 

flOO 125 
100 150 
100 175 
100 200 
.100 225 

500 525 
500 550 
500 575 
500 600 
.500 625 

500 525 
500 550 
500 575 
500 600 
500 625 

Volume of a Solid 
Paraboloid Conoid Neiloid 

m 3 m 3 m 3 

0.02013 0.01996 0.01988 
0.02553 0.02487 0.02454 
0.03191 0.03043 0.02970 
0.03927 0.03665 0.03534 
0.04761 0.04352 0.04148 

0.10063 0.09981 0.09940 
0.12763 0.12435 0.12272 
0.15953 0.15217 0.14849 
0.19635 0.18326 0.17671 
0.23807 0.21762 0.20739 

0.41282 0.41266 0.41258 
0.43353 0.43328 0.43295 
0.45602 0.45455 0.45381 
0.47909 0.47647 0.47517 
0.50315 0.49906 0.49701 

2.00412 2.06331 2.06290 
2.16966 2.16639 2.16475 
2.28011 2.27275 2.26906 
2,39545 2.38237 2.37583 
2.51573 2.49528 2.48505 

Differences* 
P - C N - C 
m 3 % m 3 % 

0.00016 0.82 —0.00008 —0.41 
0.00065 2.63 —0.00033 —1.32 
0.00147 4.84 —0.00074 —2.42 
0.00262 7.14 —0.00131 —3.57 
0.00409 9.40 —0.00205 —4.70 

0.00082 0.82 —0.00041 —0.41 
0.00327 2.63 —0.00164 —1.32 
0.00736 4.84 —0.00368 —2.42 
0.01309 7.14 —0.00654 —3.57 
0.02045 9.40 —0.01023 —4.70 

0.00016 0.04 —0.00008 —0.02 
0.00065 0.15 —0.00033 —0.08 
0.00147 0.32 —0.00074 —0.16 
0.00262 0.55 —0.00131 —0.27 
0.00409 0.82 —0.00205 —0.41 

0.00082 0.04 —0.00041 —0.02 
0.00327 0.15 —0.00164 —0.08 
0.00736 0.32 —0.00368 —0.16 
0.01309 0.55 —0.00654 —0.27 
0.02045 0.82 —0.01023 —0.41 

* Differences in volumes in m3 may appear to be in error by ±0.00001 m3 because of 
rounding off both volumes and differences to the nearest fifth decimal place. 



76 New Zealand Journal of Forestry Science Vol. 1 

Experiment 2 

Tables 2 and 3 show respectively interpolated diameters for the three curves at 
£, i and f the length between the same small- and large-end diameters as in Table 1, 
and the absolute and percentage differences in the various estimates. For the three 
intermediate points chosen, the greater the distance from D, the larger are the differences 
between the interpolated diameter for the three curves. The absolute differ
ence in interpolated diameter at a given point is identical, for a given difference 
between small- and large-end diameter, irrespective of small-end diameter; hence, the 
greater the small-end diameter, the smaller is the percentage difference in such a 
situation. 

TABLE 2—Interpolated diameters for paraboloidal, conoidal, and neiloidal shapes 

d D 
m m m m 

100 125 
100 150 
100 175 
100 200 
100 225 
500 525 
500 550 
500 575 
500 600 
500 625 

Par . 

112.5 
125.0 
137.5 
150.0 
162.5 
512.5 
525.0 
537.5 
550.0 
562.5 

y4 L 
Con. 

106.2 
112.5 
118.8 
125.0 
131.2 
506.2 
512.5 
518.8 
525.0 
531.2 

Interpolated diameters 

Neil. 
103.1 
106.2 
109.4 
112.5 
115.6 
503.1 
506.2 
509.4 
512.5 
515.6 

Par . 

117.7" 
135.4 
153.0 
170.7 
188.4 

517.7 
535.4 
553.0 
570.7 
588.4 

% L 
Con. 

112.5 
125.0 
137.5 
150.0 
162.5 

512.5 
525.0 
537.5 
550.0 
562.5 

in m m at: 

Neil. 
108.8 
117.7 
126.5 
135.4 
144.2 

508.8 
517.7 
526.5 
535.4 
544.2 

Par . 

121.6 
143.3 
165.0 
186.6 
208.2 

521.6 
543.3 
565.0 
586.6 
608.2 

% L 
Con. 

118.8 
137.5 
156.2 
175.0 
193.8 
518.8 
537.5 
556.2 
575.0 
593.8 

Neil. 

116.2 
132.5 
148.8 
165.0 
181.2 
516.2 
532.5 
548.8 
565.0 
581.2 

TABLE 3—Differences in interpolated diameters for paraboloidal, conoidal, and neiloidal 
shapes 

d D 
m m m m 

100 125 
100 150 
100 175 
100 200 
100 225 
500 525 
500 550 
500 575 
500 600 
500 625 

P - C 
6.2 

12.5 
18.8 
25.0 
31.2 

6.2 
12.5 
18.8 
25.0 
31.2 

Differences in estimated diameters in m m at: 
y4 L 

% 
5.88 

11.11 
15.79 
20.00 
23.81 

1.23 
2.44 
3.61 
4.76 
5.88 

N - C 
—3.1 
—6.2 
—9.4 

—12.5 
—15.6 

—3.1 
—6.2 
—9.4 

—12.5 
—15.6 

% 
—2.94 
—5.56 
—7.89 

—10.00 
—11.90 
—0.62 
—1.22 
—1.81 
—2.38 
—2.94 

P - C 
5.2 

10.4 
15.5 
20.7 
25.9 
5.2 

10.4 
15.6 
20.7 
25.9 

% 
4.60 
8.28 

11.29 
13.80 
15.92 

1.01 
1.97 
2.89 
3.76 
4.60 

V2 L 
N - C 
—3.7 
—7.3 

—11.0 
—14.6 
—18.3 
—3.7 
- 7 . 3 

—11.0 
—14.6 
—18.3 

% 
—3.26 
—5.86 
—7.99 
—9.77 

—11.27 
—0.71 
—1.40 
—2.04 
—2.66 
—3.26 

P - C 
2.9 
5.8 
8.7 

11.6 
14.5 
2.9 
5.8 
8.7 

11.6 
14.5 

% L 
% 

2.40 
4.22 
5.57 
6.63 
7.48 
0.56 
1.08 
1.56 
2.02 
2.44 

N - C 
—2.5 
—5.0 
—7.5 

—10.0 
—12.5 
—2.5 
—5.0 
—7.5 

—10.0 
—12.5 

% 
—2.10 
—3.64 
—4.80 
—5.71 
—6.45 
—0.48 
—0.93 
—1.35 
—1.74 
—2.11 

DISCUSSION 

The simulation routines have shown that if a measure of total volume alone is 
required there is less than 1% difference, whichever formula is used, provided that the 
difference in end diameters of a frustum is less than 75mm for small-end diameters 
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greater than 300mm, the greater the small-end diameter and vice-versa, successively 
less and less constraint need be imposed. 

If it is also necessary to accurately predict intermediate diameters, greater 
stringency is required. Thus, below a small-end diameter of 250mm, end diameter 
should not differ by more than 25mm, below 500mm by 50mm, below 750mm by 
75 mm, and so on. This recommendation is twice as stringent as Grosenbaugh's figure 
of 20% quoted earlier, and ensures that errors in interpolating diameter are less than 
± 6% down to a 100mm small-end diameter. 

The obvious choice of formula is that for a cone, the intermediate one. More 
important, however, is the need to* choose representative points of measurement, so that 
different operators can take a set of sectional measurements on any one tree which 
will not alter the estimate of its total stem volume, and can maintain consistency from 
tree to tree. Fixed lengths for sectional measurement are unsatisfactory because nodal 
swellings, sudden reductions in diameter and changes in tree shape upset the order of 
things, and these variations will be given different weightings from tree to tree, with 
inconsistent results. 

Traditional methods of sectional measurements have aimed at simplifying 
calculations on desk calculators rather than obtaining representative estimates of actual 
volume, by having one fixed length of section. Possible dangers in this approach have 
been indicated previously when volume alone is under consideration (Whyte, 1968). 
When there is also a need to interpolate diameters between successive points of 
measurement, the importance of representative data is even greater. The irrele
vance of this simplification for desk calculators when computer processing is envisaged 
and the need for a consistent standard for total stem volume based on measurements at 
unequivocal points has led to the evolution of the following technique for sectional 
measurement: 

1. measure over-bark diameter at the nearest mid-internode to 0.75m and four bark 
thicknesses at that height on the north, south, east and west aspects of the tree; 

2. mark breast-height (say 1.5m above ground) and measure diameter and bark 
thicknesses as in (1); 

3. fell tree; 

4. using breast height as a reference point, measure diameter over-bark and four 
bark thicknesses at mid-internodes, in taper steps of approximately 25mm 
diameter over-bark if the large-end diameter is 250mm or less, of 50mm if the 
large-end diameter is between 500mm and 250mm, of 75mm if the large-end 
diameter is between 750mm and 500mm, and so on down to about 50mm, 
diameter over-bark; 

5. record diameters, bark thicknesses, and heights of measurement above ground 
sequentially from butt to tip, as shown in Table 4; 

6. measure all heights to the nearest 0.05m, all diameters and bark thicknesses to 
the nearest millimetre; 

7. head each tree with plot and tree reference numbers and the number of diameter 
measuring points. 
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TABLE 4—Example of sectional measurement 

FIELD SHEET "D" COMPUTER PROGRAMME FRI 105 
P No. 99 Tree No. 1 No. of diam. meas. 18 

No. 

~1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 

Ht above 
ground 
(m) 

0.75 
1.50 
4.70 

10.70 
12.95 

20.60 
23.40 
28.30 
30.85 
33.20 

35.00 
36.35 
37.40 
38.40 
39.60 

40.80 
42.35 
44.10 
45.10 

Diam. O.B. 
(mm) 

798 
718 
650 
574 
519 

465 
422 
363 
312 
262 

244 
216 
198 
147 
119 

99 
70 
38 

(1) 

51 
48 
29 
20 
13 

13 
11 
11 
10 
10 

8 
8 
8 
9 
5 

5 
4 
3 

Bark thickness 

(2) 

51 
50 
28 
20 
15 

13 
11 
15 
11 
8 

8 
8 
8 
8 
5 

5 
4 
3 

(mm) 

(3) 

53 
50 
28 
20 
15 

13 
13 
10 
10 
8 

8 
8 
8 
8 
5 

5 
5 
3 

(4) 

50 
46 
27 
20 
14 

13 
13 
11 
13 
8 

8 
8 
8 
8 
5 

5 
5 
3 

Mid-internodal sampling points are recommended, because their use gives excellent 
consistency in measurement by different operators and in volume estimate from tree 
to tree. Volume so determined will invariably be lower than that by traditional methods, 
but as between tree variance is reduced and as total stem volume is simply a standard 
from which recoverable and merchantable out-turns are deduced, this negative bias is 
of no consequence. Taper steps need not be exactly 25mm, 50mm, or 75mm, a tolerance 
of up to ± 1 0 m m being permissible. Whenever a sharp reduction in diameter occurs 
from one mid-internode to the next (say a drop of 15mm), it is recommended that 
diameter and bark measurements be made at both in order to minimise the volume to 
which such a frustum contributes. Because of butt-swell, it has been found that, one 
measurement below breast height is usually sufficient to characterise the taper in that 
region. In practice, diameters (if they can be measured) rarely differ between breast 
height and stump, in plantation trees, by amounts sufficient to yield significant errors 
in interpolating and extrapolating (see Tables, 1, 2, and 3). 

This technique has been evolved for felled sample trees, but there is no reason why 
it cannot also be used when the tree is climbed or when a dendrometer is used to 
measure over-bark volume. 

In certain circumstances it may be just as acceptable to measure all diameters in 
50mm or even 100mm taper steps, depending upon the use to which the data are put. 
For example, in constructing volume and taper functions for a valuable crop, narrow 
taper steps should be used, and great attention paid to the presence of sudden reductions 
in diameter from one internode to- the next, because— 

1. consistency in estimating individual tree volume is very important; 
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2. interpolation of diameters is often required; 

3. more time is spent in choosing and then felling or climbing sample trees or 
setting up a dendrometer than is spent on taking detailed measurements. 

On the other hand, in a 3-P sampling procedure, when a dendrometer is used to 
measure the volumes of sample trees, it may not be possible to measure so intensively; 
in that case a larger step may be employed, and more trees sampled. 

The needs of a particular situation can be assessed by examining the full results 
of the simulation routines (they are available on request at the Forest Research 
Institute, Rotorua), and relating them to the given set of circumstances. In doing so, 
it is important to allocate minimum requirements for separate parts of the tree, and 
to note what changes in the shape occur along a profile, and where, so that efficient 
sampling can be specified. 
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