The accelerator trials: what have we learnt over the last eight years?

Simeon Smaill and team

Accelerator Trials – history

- The Accelerator Trials were established to support the target of sustainably increasing productivity
- Originally planned for five sites, but industry support allowed the creation of a sixth site
- Guiding concept improve the current tree crop <u>AND</u> the site

Accelerator Trials – locations

- Each site had a limitation to overcome, or presented an opportunity to do better
 - Based on existing knowledge and modelling
- Pragmatism
 - Had to be suitably representative to be useful
 - Had to be big enough area to fit a trial site

Accelerator Trial – design and scale

- The Accelerator Trials are large, enabling confidence in the data they produce
- Many lessons were learnt from the LTSP I trials series
 - cannot split treatments too finely
 - need to be established with a large number of trees so we have worthwhile numbers per plot by the end of rotation

Accelerator Trial – design and scale

Complicated, but ensures quality data and a return on our investment

Understanding the sites – essential initial work

Genetics – lessons so far

- Caveat all sites are relatively young, so genetic variation is indicative only at this stage
- Clear opportunities for clonal stock to improve growth and decrease variability in the central North Island area
 - Clone 31 is the standout so far, avoid the attenuata hybrid
- Initially the attenuata hybrid was doing well at the dry Ashley site
 - Recent wet conditions has allowed other stock to overtake it
 - Data indicates hybrid is better prepared for future drought
- Two clones are performing very well at the P limited Tairua site
 One is of particular interest as it is poor elsewhere; P efficient?
- At Tokoiti one clone is outperforming all other stock

Genetics – overall messages

- Site specificity matters somewhat less than we anticipated, but it still matters
- GF19 is still a good option in the top half at all sites in terms of standing volumes
- Need to undertake assessment of form and wood properties to fully understand outcomes for productivity
- Need to undertake plot level nutrient analysis to fully understand outcomes for sustainability

Treatments – Tokoiti

- Productive site that is projected to encounter moisture limitation in the current rotation
 - Shallow depth of rooting due to soil properties
- Significant site modification to increase soil depth and break soil layers
 - Also incorporated mulching of harvest residues

Treatments – Tokoiti

Before mulching

Treatments – Tokoiti

- Growth difference was greater in previous years
 - Trees in treated soils are now catching up

- Created an exposed environment
- Have seen negative effects for current crop 2022 growth data

Treatments – Rangipo

- Ex-farm site; key issue is how to make the most of improved soil
 - Two stocking rates (833 and 1282 sha)
 - No cultivation vs ripped

Treatments – Rangipo

- Site is able to support greater stocking rate 28% gain in volume at 1282 stems ha⁻¹
 - No impact on individual tree metrics
- Ongoing impact of cultivation 13% loss in volume with ripping

Treatments – Rangipo

- Recent wind damage to the trial
- Starting work to determine if the genetics and site treatments affected wind stability
- Remote and on-ground data collection
- Integrate tidy up into thinning

Treatments – Southern Kaingaroa

- Central Kaingaroa (2016) South Kaingaroa (2015) Rangipo (2016) Ashley (2017) Tokoiti (2018)
- Low nitrogen site; poor needle retention and minimal litter layer

Treatments – Southern Kaingaroa

Used NuBalM (Nutrient Balance Model) to direct additions of nitrogen as urea and biuret at a 40th of the dose rate

- Treatment response at age six
- Initially, biuret supported greater growth, but urea has now caught up
- Need to consider impact on site nitrogen pools

Treatments – Southern Kaingaroa

• Litter layer properties – are we improving the site?

- Increasing the litter layer mass is a key target for sustainable gains
- Increasing the litter N pool indicates the site has been improved for future rotations

Summary

- We have demonstrated the potential to improve both the current tree crop and the site through our treatments
- At other sites the treatments have not yet had an impact, but at the least we have novel data on the performance of the different genetics
 - provides new opportunities to better match genotypes to sites
- Opportunities to test pathways to lock in or extend the productivity gains through thinning and mid-rotation management strategies are now on the table
- These trials have given us good value to date and will become even more important to our attempts to mitigate future climate risk

Simeon Smaill Senior Scientist simeon.smaill@scionresearch.com

www.scionresearch.com www.fgr.nz

Tuesday, 13 June 2023

