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ABSTRACT 

Trigonometric volume ratio equations, which predict stem volume to any specified 
top height limit as a percentage of the total stem volume, were developed for 25 native 
tree species in southern New South Wales and Victoria. When used together with 
companion total stem volume equations, they allow direct predictions of volume to any 
height limit. Validation statistics obtained through a resampling approach showed little 
local bias over any range of relative height and the 95% confidence limits of prediction 
error were mostly within 10% over the entire range of relative height for all species. These 
equations will be useful for forest managers when estimating the volumes of multiple logs 
from the same stem during integrated logging, and in forest inventory where yield 
estimates by product categories are required. 

Keywords: trigonometric volume-ratio equations; Eucalyptus spp.; Corymbia spp. 

INTRODUCTION 
Predicting the merchantable volume of a tree is an integral part of forest management. 

Stems are usually cut to specified log lengths during harvesting, and more than one log may 
be cut from the same stem for different products. Defect sections, often found in native forest 
trees of Australia, need to be cut off and discarded before merchantable material is extracted 
from the stem. With such variations, the ability to predict stem volume to any specified height 
limit is highly desirable. 

Two approaches have been commonly used to predict stem volume to any height limit. 
The first is to construct taper functions and obtain indirect estimates of sectional volume 
through integration. The second approach is to develop volume ratio equations which predict 
the volume to any specified top height limit as a percentage of the total stem volume (e.g., 
Honer 1964; Cao & Burkhart 1980; Cao et al 1980; Van Deusen et al 1981; Knoebel et al 
1984; Avery & Burkhart 1994). When used together with companion total stem volume 
equations, volume ratio equations allow direct predictions of volume to any height limit. 
Because the volume ratio equations are fitted to the data to optimise volume estimates, they 
provide more accurate predictions of volume than taper equations (Matney & Sullivan 1982; 
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Cao et al. 1980). Indeed, a taper equation may predict stem diameters accurately, but still 
have a large bias in estimating merchantable volume (Newnham 1992). 

Recently, total stem volume equations have been developed for 25 native tree species in 
southern New South Wales and Victoria (Bi & Hamilton 1998). This paper reports the 
development of volume ratio equations that are to be used together with these total stem 
volume equations for predicting stem volume to any height limit for these species. 

DATA 
The data set for this work included taper measurements of 5699 trees from more than 25 

species of Eucalyptus and Corymbia sampled from 24 forest types in southern New South 
Wales and Victoria. Most of the samples were regrowth trees with a distinguishable top. The 
sample size ranged from more than 1000 trees to less than 20 trees among the species. For 
most major commercial species, the sample size was more than 100. For a number of minor 
species including E. consideniana Maiden, E. maidenii F. Muell., E. rubida Dean & Maiden, 
E. angophoroides R. Baker, and E. bosistoana F. Muell. the sample size was less than 20, 
and so these species were grouped together and coded as Eucalyptus spp. The number of 
sample trees for each species, the diameter at breast height (dbh) and height distribution of 
samples, the geographical areas and forest types where the samples were taken, and the field 
measurements of stem taper have been described in detail by Bi & Hamilton (1998). 

METHODS 
Stem Volume and Volume Ratio Calculations 

Smalian's formula was used to calculate underbark sectional volumes, apart from the tip 
volume which was calculated as a cone (as described by Bi & Hamilton 1998). The sum of 
sectional volumes of each tree was then taken as the "true" stem volume of the tree. Because 
the lower stem of most tree species is neiloidal, the sectional volume calculated by Smalian' s 
formula is likely to be higher than the actual volume. Dargavel & Ditchburne (1971) showed 
an example of over-estimation of less than 3% by Smalian's formula over an approximately 
1.5-m butt section of some Pinus radiata D. Don trees in comparison with true sectional 
volume obtained through water displacement methods. However, most of the sample trees 
in this study were measured at an interval less than 1.5 m over the butt and 1.5 m elsewhere, 
and so the bias in the sectional volume calculations was minimal. 

Since the taper data comprise diameter measurements taken at a number of heights along 
the stem of each tree, underbark stem volume from ground to each height was calculated by 
summing the volume of all stem sections below that height, which was then divided by the 
total underbark stem volume to derive the corresponding volume ratio. 

Model Specification 
Since volume ratios are proportions of total stem volume, they range from 0 to 1. These 

proportions are nondecreasing from the base to the top of the tree. Similarly, any height limit 
(H) can be expressed as relative to the total tree height (TH). Because 0 < H < TH, the 
corresponding relative height, h, being the ratio of H over TH, also ranges from 0 to 1. When 
expressed as a function of relative height, volume ratio increases from 0 to 1 as relative height 
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increases from 0 to 1. These characteristics of this function are shared by the sine curve 
between 0 and 7i/2, which enables the use of this trigonometric function to construct volume 
ratio equations in a similar manner to that used to describe relative stem profiles (Bi & Turner 
1994). 

A number of models were constructed using combinations of four basic components in 
the form ofs in^ / r 4 ) , by taking A as 1,1/2,1/3,and Irrespectively. The model involving 
all four components was 

Rh = sin"*Chh) sin^C/iti'i) s i n ^ M ^ ) sin^C/ih^) (1) 
where Rh is the volume ratio at relative height /?, and ab a2, a3, and a4 are coefficients. 

These models were linearised through logarithmic transformation and were fitted to the 
data using least squares regression. 

In addition, several other models were fitted to the data using nonlinear least squares 
regression with multiple initial values to ensure global minimum. These models included the 
nonlinear model form of Cao & Burkhart (1980), 

Rh-l+a'^fm ( ) 

the power function of Forslund (1991), 
J?A = [ 1 - ( 1 -/>)"> ]«2 (3) 

and three other nonlinear model forms from those reviewed by Ratkowsky (1990) but 
modified for Rh to be between 0 and 1 

Rh = ha>+a>h (4) 
Rh = 2^+a^-i (5) 

and ^ = T T F 2
 (6) 

To select the best equation form, the six models were compared in terms of their logical 
consistency, local bias and precision, and overall fit statistics. Volume ratio predicted from 
Equation 4 was greater than 1 for 25 out of the 26 species over the top 3% to 20% of the stem, 
an illogical behaviour for a volume ratio model. Equation 5, modified from Equation 4, 
showed no improvement in the logical behaviour. These two equations were excluded from 
further model comparisons. The residuals from the remaining four models were divided into 
10 even intervals over the entire range of relative height, and within each interval the mean 
and variance of residuals were calculated for each model and species to evaluate their local 
bias and precision of volume ratio estimation. Then the squared local bias and the local 
variance were averaged over the 10 relative height intervals for each model and species for 
further model comparisons. Fitted values from Equation 1 were back-transformed from 
logarithm and residuals on the real scale were obtained for this purpose. Finally, a 
generalised form of R2 was calculated to show how well the models fitted the data overall: 

t(Rhi-Rhd2 

R2=l- — (7) 

t(Rhi-Rh)
2 

i=\ 
A A 

where Rhi and Rhi are the observed and fitted volume ratios of point / and Rh is the mean 
volume ratio of all data points for each species. Equation 1 had the best performance in terms 
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of local bias and overall fit (Fig. 1). Equation 2 was a close second, but it consistently over
estimated volume ratio when relative height approaches zero. Equation 6 was the distant last. 
Since Equation 1 performed the best among all equation forms evaluated, it was chosen as 
the equation form for all species. 

Regression Analysis 
After logarithmic transformation, Equation 1 was fitted to the data for each species using 

least squares regression to obtain initial parameter estimates and diagnostic plots. Residual 
plots showed an uneven spread of residuals for all species, with the variance of residuals 
decreasing with the predicted values. In addition, outliers were clearly present and often 
several of them were correlated because they were from the same outlying tree. In the 
presence of heteroscedasticity, studentised residuals and other diagnostic statistics based on 
homogeneous error variance cannot be employed to help detect outliers. To detect outlying 
trees in this situation, the ratio between the sum of residuals and the sum of predicted values 
were calculated for each tree. The distribution of the ratio was examined for each species and 
two particular values was calculated for discriminating outlying trees: the lower quartile 
minus 1.5 times the inter-quartile range and the upper quartile plus 1.5 times the inter-quartile 
range. Trees outside the range of these two values were very extreme points of the 
distribution as shown by boxplots of Tukey (1977). Most of these trees had some degree of 
deformity due to the presence of fire scar, knot, bulge, partial death of the stem, coppice, or 
epicomic growth, reflecting partly the frequent fire disturbance in the regrowth forests where 
the samples were taken (Bi & Hamilton 1998). The number of outlying trees accounted for 
between 0% and less than 6% of the sample trees among the species. In total, outlying trees 
accounted for less than 4% of all trees for all species combined. These outlying trees, if 
included, would have had an undue influence on parameter estimation, particularly with the 
presence of multicollinearity in the log-transformed Equation 1. Therefore they were 
excluded from further analysis. 

The initial parameter estimates showed that two of the four coefficients, a} and a3i were 
negative for each species, and so the two components associated with a j and a3 in Equation 1 
became the denominator 

smai(K/2h]/i) sinPCM"4) 
h~ sinfli(;r/2A)sinfl3(;72Ai/0 ( } 

It is clear from the above expression that no logical values can be obtained when h equals 
zero. As h tends to zero, the numerator and the denominator both go towards zero, but with 
a difference in speed depending on the estimated coefficients. This difference would result 
in illogical predictions of Rh when relative height is very close to zero. The lower limit of 
relative height below which the volume ratio equation gives illogical predictions was 
calculated using numerical methods for each species. This limit of relative height varied from 
0.000 001 to 0.007 915 among the 25 species. For most species the limit is below 0.002, i.e., 
0.2% of the total tree height. Although not a concern in practical application, it was still 
desirable to have a limit as low as possible and uniformly applicable to all species. It was 
identified that the values of the lower limit and the illogical behaviour below it were largely 
attributable to the lack of data at very low relative heights for some species and the presence 
of multicollinearity in the log-transformed Equation 1. So for each tree, a volume ratio at a 
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FIG. 1-Dot plots of mean squared local bias, mean local variance, and generalised R2 for the trigonometric volume ratio equation (large circle), the 
nonlinear model form of Cao & Burkhart (1980) (small dot), and the power function of Forslund (small circle) across 26 species. 
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relative height very close to zero (h = lxlO-6) was obtained and inserted into the data set 
through quadratic interpolation using three data points closest to this relative height. With 
these additional data points in the data set, the equation was refitted for each species. 
Subsequent numerical analyses showed that the lower limit of relative height became less 
than 5 x IO"6 for all species. 

One of the assumptions underlying least squares linear regression is that the error terms 
are independent, identically distributed, normal random variables. Since the taper data 
comprised multiple diameter measurements along each sample stem, positive autocorrelations 
existed among the residuals in addition to heteroscedasticity. When autocorrelation and 
heteroscedasticity are present, the least squares estimates of regression coefficients remain 
unbiased and consistent, although no longer efficient (Myres 1990). So the estimates can still 
be used for prediction but not for making statistical inferences. As found with taper functions, 
prediction accuracy is little affected by autocorrelation in the error term and multicoUinearity 
among predictor variables in the equation (Kozak 1997). Even when the correlated error 
structure was accounted for in fitting taper models, the improvement in prediction accuracy 
was too small to be of practical importance (Williams & Reich 1997). 

However, the systematic pattern of heteroscedasticity identified in this study may affect 
local accuracy of prediction to some extent. Since the variance of the residuals decreased 
with the predicted values, the contribution of data points from the base and lower stem to the 
least squares estimates was disproportionally greater than those from the middle and upper 
stem. When the distribution of residuals over the base and lower stem was not strictly normal, 
as was the case for some species, estimates might not give the least biased prediction over 
the middle and upper stem, for which the volume ratio equations would be often used in 
practice. To reduce the influence of these data points to the least squares parameter estimates, 
weighted least squares regression was used for estimating the regression coefficients using 
weight functions of the form [ 100( 1 - ht)] ~k. Furnival' s index of fit (Furnival 1961) was used 
to select the best weight function for each species among 41 values of k ranging from 0 to 
4 with an even interval of 0.1. This index is based on transformed maximum likelihood values 
and takes the following form when weight functions are of the form [100(1 - h$\~k 

anti log -

X log V[100(l-/*,)]-* 

(9) 

where S is the least squares estimate of the standard error of the weighted error term, ht is the 
relative height of the zth observation, and n is the total number of observations for each 
species. It provides a relative measure of the departures from linearity, normality, and 
homoscedasticity of residuals simultaneously, with a smaller value indicating a smaller 
departure and a larger value indicating a greater departure. The pattern of the index plotted 
against k was a concave curve for every species, showing that the minimum was within the 
range of k specified above. 

Because the equations were fitted through weighted least squares regression using 
different weights for different species, and the weighted equations were fitted without an 
intercept term, a generalised R2 was calculated according to Equation 7 to show the 
percentage of variation in volume ratio explained by the regression equations. 
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Model Testing 
To assess the predictive accuracy of the estimated volume ratio equations, the leave-one-

out resampling approach was adopted. Although data splitting has been proposed as a way 
of validating regression models (Snee 1977; Miller 1984; Picard & Cook 1984; Picard & 
Berk 1990), it has been demonstrated to be a costly approach, in terms of both the predictive 
accuracy of the fitted model and the precision of the estimates of that accuracy (Roecker 
1991). To maximise predictive accuracy while retaining a reliable estimate of that accuracy, 
it is recommended that the entire sample be used for both model development and assessment 
(Roecker 1991). 

For each species with N sample trees, the equation was fitted N times using the same 
weight function. Each time, all data points of one tree were removed from the fitting process 
and predicted volume ratios were obtained for them using the coefficients estimated from the 
remaining data. The difference between the observed and predicted volume ratio was taken 
as the error of prediction. For each species, the observed volume ratio was plotted against the 
predicted values. If the two are identical, all data points will fall on the line of unity. The 
vertical distance from a data point to the line showed the size of prediction error relative to 
the predicted value. The accuracy of prediction was also evaluated over local relative height 
classes for each species. The range of relative height between 0 and 1 was divided into 10 
even intervals. Within each interval, the mean, the 2.5th, and the 97.5th percentiles of 
prediction error were calculated to indicate the bias and precision of the volume ratio 
prediction. 

RESULTS 
The estimated coefficients of the volume ratio equation for the 25 species together with 

fit statistics are shown in Table 1. Volume ratio curves derived from the estimated equations 
(Fig. 2) showed that the relative height of centroid (i.e., the centre of volume of the tree bole 
dividing the total stem volume into two halves) varied between 0.21 and 0.26 among the 
species, withis. camaldulensisDQYmh. mdE.pauciflora Sieber having the largest proportion 
of stem volume in the lower 21% of the stem. For all species the lower half of the stem 
accounted for 80% or more of the total stem volume, and the lower 60% of the stem accounted 
for about 90% or more of the total stem volume (Table 2). 

The pattern of observed volumeratio plotted against predicted values showed no marked 
departures from the line of unity for all species (Fig. 3). The vertical spread of the data points 
at a given relative height showed the size of prediction error relative to the predicted value. 
There was little local bias of prediction for all species, and the 95% confidence limits of 
prediction error were mostly within 10% (Fig. 4). For species such as E. muelleriana Howitt 
and E. smithii R.T.Bak., the confidence interval was asymmetric at certain relative height 
intervals, reflecting a skewed error distribution within these relative height ranges. 

DISCUSSION 
The volume ratio equations reported here are a part of a System of equations for stem 

volume and taper prediction being developed for native forest tree species of New South 
Wales. These volume ratio equations are to be used together with the total stem volume 
equations for these species (Bi & Hamilton 1998) for predicting stem volume to any height 



TABLE 1—Parameter estimates and fit statistics of volume ratio equations for the 25 species. The number of measurements and the number of sample trees 
used in the estimation were also included. 

Species 

Corymbia 
C. gummifera Hill&Johnson 
C. maculata Hill&Johnson 

Eucalyptus 
E. agglomerata Maiden 
E. badjensis de Beuzev&Welch 
E. camaldulensis Dehnh. 
E. cypellocarpa Johnson 
E. dalrympleana Maiden 
E. delegatensis Baker 
E. elata Dehnh. 
E.fastigata Deane&Maiden 
E. fraxinoides Deane&Maiden 
E. globoidea Blakely 
E. muellerana Howitt 
E. nitens (Deane&Maiden) Maiden 
E. obliqua L'Her. 
E. paniculata Smith 
E. pauciflora Sieber 
E. pilularis Smith 
E. piperita Smith 
E. radiata Sieber 
E. saligna Smith 
E. scias Johnson&Hill 
E. sieberi L.Johnson 
E. smithii Baker 
E. spp. 
E. viminalis Labill 

*i 

-3.728 
-3.721 

-4.828 
-5.508 
-2.739 
-3.763 
-5.110 
-3.897 
-5.199 
-4.390 
-4.632 
-3.290 
-4.253 
^1.663 
-4.040 
-4.499 
-4.304 
-3.166 
-2.215 
-4.144 
-3.114 
-2.936 
-2.533 
-4.668 
-4.118 
-5.621 

a2 

48.646 
46.403 

66.050 
68.412 
33.267 
49.870 
71.491 
50.467 
68.221 
56.771 
61.421 
45.486 
58.572 
60.644 
53.935 
55.912 
55.754 
41.116 
32.244 
54.143 
42.238 
36.606 
36.330 
64.759 
52.953 
74.831 

a3 

-123.208 
-113.653 

-172.822 
-172.301 

-82.084 
-128.365 
-191.424 
-126.571 
-177.193 
-145.871 
-157.973 
-117.145 
-154.287 
-156.110 
-139.469 
-138.313 
-146.183 
-102.583 

-83.870 
-140.817 
-106.856 

-88.374 
-94.589 

-172.253 
-135.244 
-195.644 

a4 

86.629 
78.228 

122.621 
119.962 
58.341 
91.258 

138.021 
88.090 

125.727 
103.433 
111.290 
83.060 

110.493 
110.512 
99.140 
95.359 

105.640 
71.765 
60.700 

101.004 
75.048 
60.856 
68.134 

123.789 
95.684 

138.959 

R2 

0.991 
0.997 

0.993 
0.996 
0.989 
0.993 
0.991 
0.996 
0.993 
0.994 
0.998 
0.995 
0.993 
0.995 
0.994 
0.996 
0.989 
0.997 
0.996 
0.992 
0.998 
0.994 
0.995 
0.989 
0.988 
0.995 

No. of 
measurements 

1 808 
3 201 

2 068 
526 

1940 
3 879 

221 
4 983 

392 
12 644 

1 201 
4 752 
2 024 

703 
6 848 

658 
399 

2 524 
3 001 
3 011 

436 
301 

17 637 
997 
702 

1285 

No. of 
trees 

149 
212 

117 
32 

109 
273 
20 

315 
25 

933 
75 

338 
138 
55 

543 
49 
41 

148 
194 
286 
24 
23 

1192 
47 
51 

106 
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TABLE 2-The relative height of centroid (hc), and volume ratios at 0.5 and 0.6 relative height (RQ 5, 
R0 6) derived from the volume ratio equations for the 25 species. 

Species hc Ro.5 RQ.6 

Corymbia 
C. gummifera 
C. maculata 

Eucalyptus 
E. agglomerata 
E. badjensis 
E. camaldulensis 
E. cypellocarpa 
E. dalrympleana 
E. delegatensis 
E. elata 
E.fastigata 
E.fraxinoides 
E. globoidea 
E. mueHerana 
E. nitens 
E. obliqua 
E. paniculata 
E. pauciflora 
E. pilularis 
E. piperita 
E. radiata 
E. saligna 
E. scias 
E. sieberi 
E. smithii 
E. spp. 
E. viminalis 

0.248 
0.254 

0.256 
0.246 
0.213 
0.239 
0.246 
0.256 
0.241 
0.235 
0.257 
0.255 
0.241 
0.241 
0.245 
0.256 
0.206 
0.247 
0.241 
0.223 
0.258 
0.250 
0.242 
0.235 
0.233 
0.250 

0.821 
0.819 

0.810 
0.836 
0.855 
0.827 
0.817 
0.815 
0.831 
0.836 
0.813 
0.807 
0.821 
0.830 
0.822 
0.822 
0.860 
0.820 
0.814 
0.844 
0.807 
0.820 
0.814 
0.825 
0.837 
0.822 

0.899 
0.899 

0.893 
0.915 
0.921 
0.903 
0.897 
0.896 
0.907 
0.911 
0.896 
0.889 
0.899 
0.908 
0.900 
0.903 
0.926 
0.898 
0.891 
0.916 
0.888 
0.898 
0.891 
0.902 
0.911 
0.903 

limit. To estimate the merchantable volume of a tree with a given diameter and height, 
calculate the total stem volume first using equations given by Bi & Hamilton (1998). Then 
divide the stump height and merchantable height of the tree by its total height to obtain the 
corresponding values of relative height for calculating volume ratios using the volume ratio 
equations. Finally, multiply total stem volume by the difference in volume ratio between the 
two relative heights to obtain the merchantable volume. This calculation can be extended to 
estimate the volumes of multiple logs from the same stem when trees are harvested for 
multiple products during integrated logging, which has been a part of the management 
system of native forests such as those in south-east New South Wales since 1969 (Bridges 
1983). In addition, the volume ratio equations will prove to be useful in forest inventory 
where yield estimates by product categories are required. For predicting log-end diameters, 
trigonometric variable-form taper equations have been derived from the volume ratio 
equations for these species and the work will be reported elsewhere. 

Among five common solids of revolution of interest to foresters, the relative height of 
centroid of conoid is 0.2063 and that of second-degree paraboloid is 0.2929 (Wood et al. 
1990). For all 25 native forest tree species in this study, the relative height of the centroid 
ranged from 0.206 to 0.25 8 (Table 2), suggesting that stem shapes vary between a conoid and 
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a second-degree paraboloid among these species. This contrasts interestingly with the 
relative height of centroid for the exotic P. radiata which is approximately 0.3, a second-
degree paraboloid (Wood et al. 1990). 
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