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ABSTRACT 
A stem taper model involving a high-order polynomial for plantation Pinus caribaea 

Morelet var. hondurensis Barrett & Golfari (Caribbean pine) grown in Queensland was 
fitted in three stages. In the first stage, the stem profile for each tree was modelled using 
functions of under-bark diameter and height as the dependent and independent variables 
respectively. In the second stage, the parameter estimates from these individual tree 
regressions were subjected to a principal component analysis. The first two principal 
components were then modelled using total height and diameter at breast height as the 
independent variables. In the third stage, total height and diameter at breast height under 
bark were modelled in terms of predominant height, and diameter at breast height over 
bark. Using these equations, and the inverse transformation from the principal components 
to individual tree regression coefficients, individual tree profiles and volumes were 
predicted from height and diameter at breast height. 

The maximum average diameter bias for the final model, using predominant height 
and diameter at breast height over bark as predictive variables, was 2.5 mm. The average 
tree volume bias, based on coefficients modelled using predominant height and over-
bark diameter at breast height, was 0.13%. Apart from its accuracy, another advantage 
of this model is its ability to accommodate taper changes with tree size. 

Keywords: taper model; volume; stem form; Pinus caribaea. 

INTRODUCTION 
Taper equations are functions which can provide estimates of the diameter at any height 

along the bole, the height of any predetermined diameter, and the volume between any two 
points on the stem. Numerous taper models have been reported over several decades. The 
early models were relatively simple for ease of computation and generally involved only one 
independent variable (e.g., Behre 1923). With the advent of the computer, taper models 
became more sophisticated and their accuracy improved. Max & Burkhart (1976) divided the 
stem into three segments and modelled each segment using quadratic polynomials, while Liu 
(1980) applied cubic spline functions to model stems divided into several segments. Other 
authors (e.g., Bruce at al 1968; Goulding & Murray 1976; Gordon 1983) have used higher 
order polynomials containing several terms to model the entire stem using a single function. 
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Because no joining points are required, these models are, in general, algorithmically less 
complex than models developed using the segmented approach. In all of these taper 
equations, relative diameter or a function of relative diameter has been modelled in terms of 
relative height. 

In contrast, Fries (1965), Fries & Matern (1966), and Liu & Keister (1978) have used 
another approach. In their studies, diameters at several consistent positions relative to the 
height were subjected to a principal component analysis. One or more multiple regression 
equations were subsequently developed, using the eigenvectors as the dependent variables 
and the relative heights and their powers as the independent variables. 

In all of these studies, the data from a number of sample trees are used simultaneously to 
determine the model coefficients. Consequently, the models predict a constant relative tree 
shape for all trees regardless of size. In other words, as pointed out by Demaerschalk & Kozak 
(1977) most popular taper models are biased and the pattern of bias changes from one size 
class to another. Thus, it may be necessary to develop a series of discrete functions to 
accommodate taper changes with size, which is inconsistent with the continuous nature of 
such changes. 

In order to overcome this problem, Real & Moore (1988) modelled the trees individually 
and predicted the individual tree regression coefficients using tree variables (viz total height, 
shape quotient, and crown ratio). This paper presents a taper model suitable for Pinus 
caribaea which has been based on the model developed by Real & Moore (1988). Height and 
diameter at breast height have been used to predict the individual tree regression coefficients. 

NOTATION 
For convenience, relevant notation is summarised below: 

h = height from base of tree 
d = diameter under bark at a given height (h) 
Hj = tree total height 
Hp = predominant height (i.e., height of the 50 tallest trees per hectare measured on the 

basis of one tree per 0.02-ha unit) 
DBHob = diameter at breast height over bark 
DBHub = diameter at breast height under bark 

X =(HT-h)/(HT-L3) 
Y = (dl DBHub)2 -X2 

bi = the ith regression coefficient 
b = vector of regression coefficients 

Pi = the ith principal components 
p = vector of principal components 
E = matrix containing the eigenvectors (arranged in columns) of the covariance 

matrix for the regression coefficients 
ET = transpose of E. 



196 New Zealand Journal of Forestry Science 21(2/3) 

DATA 
A total of 730 trees from Ingham (latitude 18° 39) in northern Queensland were 

destructively sampled. The trees were selected from routinely managed plantations to cover 
the range of size classes. The diameter under bark for each tree was measured at 0.20,0.50, 
1.30 m (DBHub), and then at approximately 3-m intervals in the middle of the internodes. 
Total heights {Hj), predominant heights (///>), and diameters at breast height over bark 
(DBHob) were also recorded. Heights and diameters were measured in metres (to the nearest 
decimetre) and centimetres (to the nearest millimetre) respectively. 

The distribution of the trees according to predominant-height and diameter-at-breast-
height classes is shown in Table 1. 

TABLE 1-Distribution of sample trees according to predominant-height and diameter-at-breast-
height-over-bark (DBHob) classes 

DBHob 
class (cm) 

5-15 
15-25 
25-35 
35-45 
Totals 

5-10 

18 
43 

0 
0 

21 

Predominant 
10-15 

24 
74 
2 
0 

100 

15-20 

3 
101 
18 
0 

122 

height class (m) 
20-25 

7 
89 
55 

1 
152 

25-30 

3 
89 

989 
2 

192 

30-35 

1 
44 
83 
15 

143 

Totals 

56 
400 
256 

18 
730 

The stands from which the sample trees were obtained were extremely variable. They had 
been subjected to a variety of silvicultural practices, especially with respect to thinning 
regimes and fertiliser applications, and were planted on a variety of soil types having 
different site qualities. In addition, some stands were severely damaged by a cyclone in 1985. 
Consequently, the intact stems which were sampled varied considerably in both size and 
form. 

TAPER MODEL 
First Stage—Estimation of Individual Tree Regression Coefficients 

The taper model developed by Real & Moore (1988) was as follows: 

Y = bi(X3 -X2) + b2 (X
8 -X2) + b3 (X40-X2) 

An examination of the predicted profiles for the sample trees indicated that the Real & 
Moore (1988) model consistently under-estimated diameters towards the tops of the larger 
trees (greater than approximately 25 m) and was not sufficiently flexible to cope with the 
variability in the region of the central stem. It was satisfactory for most of the medium-sized 
and smaller trees. This is illustrated by the three typical trees in Fig. 1. 

Real & Moore (1988) demonstrated that the first term in their model (i.e., X3 - X2) 
influenced diameter estimation along the entire stem but principally at the tip. Empirical 
investigations, using the data for P. caribaea, revealed that adjustments to this term could 
improve the fit at the tip of the tree. As a consequence, it was modified by substituting a 
function of H? and DBHub for the index of the first element of this term (i.e., X3). This 
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FIG. 1-Examples of the fit of the Real & Moore (1988) model to a large, medium, and small 
tree (dotted lines), and the modified model (solid lines) to the same trees using 
coefficients based on individual tree regressions. 

function was determined using non-linear regression analysis, making the power of the first 
element a parameter in the model, and modelling this parameter estimate in terms of Hj and 
DBHub. 

However, the model still lacked the necessary flexibility to cope with the variability in the 
region of the central stem, indicating that an additional term was required. Real & Moore 
(1988) demonstrated that the second term in their model (i.e., X8 -X2) controlled the lower 
30% of the bole. Thus, after testing powers of X from four to seven, (X5 -X2) was selected 
as the most suitable term. Consequently, the model became: 
Y = 6i(X5-0 " °'l2Hr + 0.033 DBHub _ X2) + ^ _ x 2 ) + ^ 8 _ x2) + fc4(X40 _ x2) 

which can also be expressed as: 

d2=Z)£/M>Mx2+6l(X5^ 
The improved fit of the model is also illustrated in Fig. 1. 



198 New Zealand Journal of Forestry Science 21(2/3) 

Second Stage—Prediction of Individual Tree Regression 
Coefficients from HTand DBHub 

In order to model the individual tree regression coefficients (&/) in terms of Hj and 
DBHub, it was necessary to exclude 15 trees which had extremely aberrant individual tree 
regression coefficients and unusual profiles. These trees, which had either very large or small 
height to diameter ratios, were excluded from these and subsequent analyses. The first-stage 
regression coefficients for the remaining 715 stems were subjected to a principal component 
analysis using the covariance matrix for b. That is: 

p = ETb 

The covariance matrix and the eigenvectors for this transformation are given in the 
Appendix. The means for the four individual tree regression coefficients (b\ to b$) were 
-4.04, 1.44, -0.501, and 0.0355 respectively. The eigenvalues corresponding to the four 
eigenvectors were 27.5,2.47,0.157, and 0.000 402 respectively. Estimates (pi) of the first 
two principal components were obtained using stepwise multiple regression analysis, with 
Hj and DBHub as the independent variables. It was only necessary to model the first two 
principal components since together they explained 99.5% of the variation for b. The 
equations are given below, together with the coefficients of determination (r2) and the 
residual mean squares (RMS) for each equation. All regression coefficients in both equations 
were statistically significant (p < 0.05). 

pi = -3.58 - 0.39\HT + 7.37 £***!!* (r2 = 0.503, RMS = 13.7) 
tij 

p2=4.36 - 0.936//r+ OA09DBHub + 0.0264//2
r- 0.0103DBHub2 (r2 = 0.494, RMS = 1.26) 

Since the matrix E is orthogonal (i.e., the inverse and transpose are identical), an estimate 
(b) of b was obtained using the following inverse transformation. 

b = Ep 
For this reverse transformation, the mean values were used for the third and fourth 

principal components (-0.000 345 and 0.0140 respectively). 

Third Stage—Prediction of Hrand DBHub 
In order for the model to be used in practice, it was necessary to estimate volume and taper 

from the routine field measurements of DBHob and Hp. Thus, DBHub and Hj were also 
modelled using Hp and DBHob as independent variables. The model used to predict / / j , 
which was developed by Vanclay (1982), has two desirable properties. Hj is 1.30 m for a 
DBHob of 0 cm and Hj increases asymptotically towards Hp approximately as DBHob 
increases. Thus, estimates of Hj and DBHub were determined using the equations given 
below. Coefficients of determination (r2) and residual mean squares (RMS) are also given. 
All regression coefficients in the models were statistically significant (p < 0.05). 

3.44 + 0.984//--1.3 
HT = 3.44 + 0.984 Hp

 p- = (r2 = 0.949, RMS = 2.04) p 1 + 0.045%DBHob + 0.00425DBHob2 

DBHub = e"0445 +L01]nDBHob (r2 = 0.971,RMS = 0.0024) 

In Fig. 2, which shows the three trees presented in Fig. 1, the shape averaging is illustrated 
which occurred, particularly for the large tree, when predicted coefficients were used. 
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FIG. 2-Fit of the modified model to the trees in Fig. 1, based on coefficients estimated from total 
height and diameter at breast height under bark (solid lines) and from predominant 
height and diameter at breast height over bark (dotted lines). 

VOLUME 
Total volumes (cubic metres) for individual trees were determined as follows using 

integration: 

Volume = l 40 000 . 
h\ 

nDBHub2 

40000 

+ bi 

d2dh 

(1 .3 - / / r L 3 (l-bl-b2-b3-b4) 

X6.0-0.12HT+O.OHDBHub ^6 tf) ^41 

6.0 - 0.12HT + Q.tmDBHub + hl T + &3 T + &4 W 

hi 
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MODEL EVALUATION 
Diameter 

Aggregate difference (AD) and root mean square (RMSE) for the diameters of each tree 
were used as measures of bias and prediction respectively (Real & Moore 1988). These 
statistics were calculated for each tree for five sections of equal length and then averaged over 
all trees. 

J (Ai-Ei) 

n 
J i-n 

RMSE = V % (Ai-Ei)2/n 
i=l 

where Ai is the actual (i.e., measured) diameter, £,- is the estimated diameter, and n is the 
number of diameter measurements for each section for each tree. 

The ADs and RMSEs were calculated using coefficients based on individual tree 
regression equations (developed using all sample tree data) for both the Real & Moore (1988) 
model and the modified model. For the modified model, these statistics were also calculated 
using the modelled coefficients at both levels of prediction (i.e., stages 2 and 3). The ADs and 
RMSEs, expressed in absolute terms and as percentages of the mean observed diameter for 
each stem section, are presented in Table 2. 

As indicated previously, it is evident from Table 2, that the Real & Moore (1988) model 
consistently under-estimated diameters for the upper part of the stem. The ADs mdRMSEs 
based on individual tree regressions using the modified model were the smallest. Both the 
ADs and the RMSEs determined using coefficients predicted from Hj and DB Hob were 
generally smaller than those determined using coefficients predicted from Hp and DBHob. 

Volume 
Using integration, total volumes were determined for each tree using the coefficients 

obtained from the individual tree regressions. These volumes were compared with the total 
volumes determined using the standard method currently being used by the Queensland 
Forest Service for estimating the volumes of sample trees. This method, which has been 
described by Vanclay & Shepherd (1983) and which is based on the technique developed by 
Grosenbaugh (!Q66), was used to determine the "true" taper and volume for each sample 
tree. It involves the fitting of appropriate (parabolic, hyperbolic, or conic) shapes to three 
diameter-height pairs, interpolating diameter estimates for heights midway between the 
measured heights and using Newton's formula to calculate the volume of each frustum. The 
almost perfect agreement between these two estimates of individual tree volume is 
demonstrated by the following equation. The coefficient of determination (r2) and the 
residual mean square (RMS) are also given. 

Taper model volume = 0.000 332 + 0.9997 current standard volume 
(r2 = 0.999, RMS = 0.000 002) 
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TABLE 2-Diameter bias and predictability for trees modelled using (i) the Real & Moore (1988) model 
for individual tree regressions, (ii) modified model for individual tree regressions, (hi) 
coefficients predicted from total height and diameter at breast height under bark (DBHub), 
and (iv) coefficients predicted from predominant height and diameter at breast height over 
bark (DBHob) 

Section 
(% height) 

(i) Real & Moore (1988) 
0-20 

20^10 
40-60 
60-80 

80-100 
(ii) Modified model 

0-20 
20-40 
40-60 
6-80 

80-100 
(iii) Total height and DBHub 

0-20 
20-40 
40-60 
60-80 

80-100 

Mean 
diameter 

(cm) 

19.5 
14.7 
12.4 
8.8 
3.8 

19.5 
14.7 
12.4 
8.8 
3.8 

19.5 
14.7 
12.4 
8.8 
3.8 

(iv) Predominant height and DBHob 
0-20 19.5 

20-40 
40-60 
60-80 

80-100 

14.7 
12.4 
8.8 
3.8 

Aggregate 

(cm) 

0.02 
-0.06 
-0.10 

0.28 
0.45 

-0.01 
0.00 

-0.01 
0.02 
0.02 

-0.13 
0.02 

-0.07 
-0.07 

0.01 

-0.15 
0.16 

-0.25 
-0.18 

0.05 

difference 

(%) 

0.11 
-0.42 
-0.78 

3.18 
11.65 

-0.07 
-0.02 
-0.07 

0.23 
0.47 

-0.65 
0.11 

-0.60 
-0.77 

0.36 

-0.79 
1.11 
2.05 

-1.99 
1.26 

Root mean 

(cm) 

0.16 
0.16 
0.20 
0.46 
0.52 

0.10 
0.08 
0.10 
0.14 
0.25 

1.06 
0.81 
0.97 
0.87 
0.52 

1.17 
0.90 
1.24 
1.24 
1.21 

square error 

(%) 

0.80 
1.10 
1.57 
5.23 

13.63 

0.51 
0.56 
0.81 
1.62 
6.45 

5.42 
5.50 
7.80 
9.87 

13.56 

6.0 
6.12 
8.42 

14.04 
31.64 

The tangent of the slope of this regression line was not significantly different from one, 
while the intercept was not significantly different from zero (p < 0.05). 

Individual tree total volumes, based on individual tree regressions, were then compared 
with the corresponding volumes estimated using predicted regression coefficients. By 
regarding the volumes obtained using individual tree regressions as the actual values 04,-) and 
volumes based on the appropriate modelled coefficients as the estimated values (£;), the 
relative mean bias (RMB) for volume was defined as: 

RMB 

I*(Ai-Ei) 
i=l 

i-n 

H Ai 
;=i 

where n is the number of trees. These relative mean biases were determined for several //p 

and DBHob classes, as well as for all stems combined. They are presented in Table 3, 
expressed as percentages. 
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TABLE 3-Volume biases, expressed as a percentage of the volume from individual tree regressions, 
based on (i) coefficients predicted using total height and diameter at breast height under 
bark, and (ii) coefficients predicted using predominant height and diameter at breast height 
over bark (DBHob); n = numbers of trees in each size class. 

DBHob 
class 
(cm) 

<20 
20-30 
>30 

Totals 

(i) 

-2.66 
0.94 

-0.29 

<20 

(ii) 

2.23 
1.82 

1.96 

Predominant height class ( 

n 

140 
98 
0 

238 

(i) 

1.29 
-0.23 
-1.99 
-0.37 

20-30 

(ii) 

-2.00 
0.19 

-1.51 
1.96 

n 

60 
259 
25 

344 

m) 

(i) 

-2.95 
-0.08 

1.20 
0.61 

>30 

(ii) 

-11.30 
-1.19 
0.68 

-0.40 

n 

10 
78 
45 

133 

(i) 

-1.15 
0.02 
0.28 

-0.02 

Totals 

(ii) 

-0.41 
0.24 
0.05 
0.13 

n 

210 
435 

70 
715 

The over-all relative mean biases for volume were small for both levels of prediction. 
These were -0.02% using coefficients predicted from Hj and DB Hub and 0.13% for the 
coefficients predicted from Hp and DBHob. For the various size classes, the range of relative 
mean biases (from -11.3% to 2.2%) resulting from coefficients predicted using Hp and 
DBHob exceeded the range (from -3.0% to 1.3%) of those predicted using HjandDBHub. 
However, the -11.3% bias was based on only 10 stems and represented an average bias of 
only 0.019 m3/tree. 

Discussion 
A three-stage procedure was used to develop the taper model presented here. 

In the first stage, individual tree regressions were determined using all sample tree 
measurements. This model could be used as a replacement for the current method for the 
determination of sample tree taper and volume. It gave almost identical results but has the 
advantage of being algorithmically simpler. 

The second stage involved the prediction of the individual tree regression coefficients 
obtained in the first stage, using total height and diameter at breast height under bark. The 
level of prediction is appropriate where bark thickness and individual tree heights are known. 
It has the potential for use as a research tool where reasonably intensive individual tree 
measurements are justified. For example, it could be used in the breeding programme to 
identify trees having superior volume and taper. It could also be used to determine the effects 
of silvicultural practices such as planting density or various thinning regimes on volume and 
taper. 

Finally, diameter at breast height under bark and total height were modelled in terms of 
diameter at breast height over bark and predominant height. This level of prediction was the 
least accurate, but could be used where stem taper and volume are required from these routine 
stand measurements for the purposes of marketing or resource evaluation. 

It should be noted that the use of principal component analysis for the construction of this 
model is very different from its use by Fries (1965), Fries & Matern (1966), and Liu & Keister 
(1978). Here, the technique has been used to facilitate the modelling of the regression 
coefficients (6,-s) and to establish associations between the estimates of these coefficients. 
Although they did not state it explicitly, it would appear that Real & Moore (1988) 
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recognised that it was necessary to establish such links. This is evident from the fact that they 
modelled their bi in terms of b\. My attempts to imitate their technique or to model the 
coefficients independently proved unsuccessful. However, it was possible to establish the 
necessary associations by modelling the coefficients simultaneously via the use of principal 
component analysis. The successful use of the technique in this situation, however, depends 
on linear relationships between the regression coefficients. In this instance, bivariate 
relationships between all the b(S were either linear or almost linear. 

Where comparisons were possible, both diameter bias and predictability results compared 
favourably with those presented by Real & Moore (1988). Average diameter bias results 
based on coefficients derived from individual tree measurements were very satisfactory and 
were less than measurement errors. Diameter biases determined using the modelled 
coefficients, although larger, would still be adequate for most purposes. Similarly, while the 
predictability decreased for modelled coefficients, it was worst towards the top of the tree 
which is the least valuable part. 

Despite the accuracy and reliability of the model, there are disadvantages. In particular, 
two diameter measures below 1.3 m with one between 0.2 and 0.3 m were required for its 
development. If these measures were not included it was possible for the predicted profile 
to turn inwards toward the tree axis at the base. Using predicted coefficients, it was possible 
for the predicted square of the diameter to become negative near the very top (3-4%) of the 
stem, indicating that the predicted profile had crossed to the other side of the tree axis. This 
was not a serious problem in that it occurred for only five trees with the worst having a 
"negative diameter" of 1.4 cm. This had only a slight effect on the volume estimates for the 
trees affected. Additionally, the model forces the predicted stem profile through total height 
and diameter at breast height under bark, which means that these data need to be either 
measured or predicted very accurately. This is not as difficult for the diameter as it is for 
height. The heights of standing trees are difficult to measure accurately and if the trees are 
felled the tops often break. Moreover, the equation used to predict total height had a larger 
residual variation than that used to predict diameter at breast height under bark. 

Despite some shortcomings, the model has, with the exception of relatively few trees, 
proved sufficiently resilient to cope with the highly variable sample tree population used. It 
has shown sufficient promise to justify further developmental work. In particular, it needs 
to be validated using P. caribaea from other stands at other locations in Queensland. Since 
bark thickness and the relationship between predominant and total heights are sensitive to 
geographic, silvicultural, and site quality effects, it is very likely that separate fits would be 
required for the third stage. It may also be possible to improve the accuracy of the model by 
including additional individual tree attributes such as form quotient or crown ratio. 
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APPENDIX 
COVARIANCE MATRIX FOR THE INDIVIDUAL TREE REGRESSION 

COEFFICIENTS AND ITS EIGENVECTORS 

bi 
b2 

bj 
b4 

b, 
19.6 

-11.2 
3.33 

-0.0937 

Covariance matrix 

b2 

-11.2 
9.66 

-2.58 
0.0442 

b3 

3.33 
-2.58 
0.873 

-0.0190 

b4 

-0.093 7 
0.044 2 

-0.019 0 
0.001 03 

Eigenvectors of covariance matrix 

1 2 3 4 
0.828 -0.559 -0.004 57 0.004 78 

-0.539 -0.815 0.212 0.009 07 
0.156 0.151 0.976 0.0304 

-0.003 79 0.005 49 -0.031 3 0.999 




