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Abstract

Background: Simulation is an established tool for examining the efficacy of forestry sampling designs yet there is
little empirical information on the effect that spatial layout of a sample has on stand-level inventory of managed,
even-aged stands. This simulation study examines the performance of nine different sampling methods in terms of
bias and reliability.

Methods: Data sets, derived from five stands of radiata pine, consisted of census lists of every stem, including the
location of each stem, breast-height diameter over-bark (DBH), height and derived volume. In four small stands, stems
had been geo-located using ground-based methods, whereas the data for a larger stand were derived from an Airborne
Laser Scanning data set. Nine sampling methods (random, stand-boundary, quasi-random, Zigzag transects, grid-based
plots of four sizes and single-point) were simulated and applied repeatedly to each stand, and the bias and reliability of
the estimate of mean stem volume calculated.

Results: Sampling the stand boundary produced a biased estimate, averaging a 12% over-estimate for the four stands
aged 22 years or more. The other sampling methods generally showed little bias with most estimates within ±0.5% of the
population mean, although the Single-point method was considerably less accurate. The Stand-boundary, Grid-plot
(>0.02 ha), and Single-point methods produced unreliable confidence intervals.

Conclusions: Most sampling methods showed little bias and good reliability when analysed as simple random samples.
Sampling plots in the range of 0.02 to 0.04 ha, located systematically on a grid with random orientation and origin,
produced some of the most unbiased and reliable estimates. However, the Zigzag method may be appropriate in small
stands as it produces little bias, good reliability and is likely to be operationally efficient.
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Background
Simulation studies have long been used to investigate
forest sampling (O’Regan and Palley 1965), as simulation
is the only viable technique for testing the validity of a
sampling design over a large number of samples. For ex-
ample, a recent study to evaluate empirically the efficacy
of different estimators in complex designs for large-scale
biomass inventories (Ene et al. 2013) showed large dif-
ferences between the actual and standard analytical vari-
ances. It also highlighted other methods that produced
satisfactory statements of the precision of the estimates.
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Airborne laser scanning (ALS) is increasingly becoming
more accessible as a standard forest management tool
(Næsset et al. 2004, Watt et al. 2013). Adequate spatial
coverage has long been considered a critical feature of
good forest inventory design. Auxiliary information from
remote sensing, especially ALS, is more frequently avail-
able at the design stage so it is possible to construct a sam-
ple that is balanced both spatially and across the auxiliary
variables. The benefits of this approach have been demon-
strated by simulation (Grafström and Hedström 2013).
In stand or woodlot inventory, simple designs can be

used to provide adequate information provided they are
practical and cost efficient. While the inventory planner
aims to ensure systematic spatial coverage when locating
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samples in a forest stand (Goulding and Lawrence 1992,
Gordon 2005), there is little empirical information as to
the importance of coverage, or guidance on the best way
to achieve it. This simulation study was designed to exam-
ine the consequences of different spatial methods of sam-
pling for mean stem volume when applied to even-aged
plantation stands (in the 1 – 30 ha size range). The num-
ber of stems in a stand can be determined by a tally in
small stands, or via stem-counting methods where remote
imagery or ALS data are available (Culvenor 2002, Pont
et al. 2015). The combination of mean stem volume and
number of stems provides stand-level volume estimates.
Two measures of a sampling method’s success were used
for comparison: bias, the difference between the popula-
tion mean and the average sample mean over a large num-
ber of samples, and reliability, the percentage of samples
which contained the population mean within the calcu-
lated confidence interval.

Methods
Data
Data sets from five, even-aged stands of radiata pine
(Pinus radiata D.Don) in New Zealand were assembled.
Details of each stand are provided in Table 1. Stand 1
was approximately 10 times larger than each of the other
four stands. Stand 3 was approximately half the age of
the other four stands. These sets were census lists of
every stem in a forest stand, including each stem’s loca-
tion, breast-height diameter over-bark (DBH) and height.
In cases where height had not been measured on every
stem, a Petterson height-DBH equation (Schmidt, 1967)
was fitted and the stem assigned a conditional, average
height. The volume under-bark of each stem was de-
rived from the DBH and height using a volume function
(Kimberley and Beets 2007).
In the four small stands (Stand 2, 3, 4, 5), stems had

been geo-located using ground-based, surveying methods.
The data for the largest stand (Stand 1) was obtained

from an ALS set supported by 371 stems measured in
ground plots. The ALS point cloud was processed to
create a canopy–height model (CHM), represented as a
grayscale image. Stand density estimated from the
ground plots was used to define a suitable range of
smoothing levels to be applied to the CHM image. A
Table 1 Details of Data Sets

Name Location Size (ha) Topography Stand Age Bas

Stand 1 Eastern Bay of Plenty 22.8 Very steep 26 40.2

Stand 2 Rotorua 1.93 Undulating 25 48.0

Stand 3 Nelson 1.34 Steep 12 25.0

Stand 4 Kaingaroa 1.47 Flat 23 32.3

Stand 5 Kaingaroa 2.29 Flat 22 23.7
smoothed image was generated that corresponded to
each of ten smoothing levels covering the range. A tree-
detection algorithm was used to process each image so
that the location (Figure 1), crown radius and height of
every stem could be retrieved.
Under the assumption that the crown radius and

stem DBH are linearly related (Patton 1988, Madgwick
1994), the standardised distributions of DBH from the
ground plots were compared with the standardised dis-
tributions of crown radius from the ten segmented
CHM images. The Kolmogorov-Smirnof (KS) D statistic
(Conover 1999) was used to select the best-matching
distribution (corresponding to a smoothing level). A
simple linear relationship was then used to estimate
DBH for every stem from its standardised crown radius.
The resulting distribution of DBH was strongly corre-
lated with the actual distribution of DBH from the 371
measured stems (Pont et al. 2015).
Sampling methods
Computer programmes in C# were written to simulate
the following sampling methods in such a way that they
could be repeatedly applied to the list of stems from
each stand:
Random sample
A pseudo-random number generator was used to select
stems from the population with equal probability and
without regard for their spatial location. A random-
sampling method was included in this study as a
benchmark because its characteristics are well known
and conform to the requirements of sampling theory
even though such methods often fail to provide good
spatial coverage.
Stand-boundary sample
This approach was used to simulate a spatially biased
sample by selecting stems based on their proximity to
random points around the boundary of the stand. This
method was included in the comparison to quantify any
size difference between edge stems and interior stems as
this would result in a biased estimate of stem volume.
al Area (m2 ha−1) Mean top height (m) Stem count
(stems ha−1)

Volume
(m3 stem−1)

0 38.18 212 2.350

9 38.22 255 2.341

4 18.98 255 0.657

1 29.65 247 1.272

0 27.31 194 1.117



Figure 1 Stand 1 shown as a Quasi-random group (Sobol) sample. The stand boundary is shown as a blue line, stem locations as green dots,
selected stems as red crosses, plot centres as blue plus signs. The underlying map grid is labelled in metres.
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Quasi-random group sample
A quasi-random sequence is less random than a pseudo-
random sequence but is still useful for tasks such as nu-
merical integration and optimisation because it tends to
sample n-dimensional space “more uniformly” than ran-
dom numbers. Quasi-random sampling also allows for
additional sample points to be added, with continual im-
provement in accuracy if, say, a target precision has not
been met after measuring an initial sample. It provides
good spatial coverage with “random” locations, without
the risk of the locations coinciding with some periodic
variation in the population, a risk which grid-based sam-
pling always carries.
For each sample, a set of Sobol (Sobol 1967) points in

two dimensions was found that was within the stand,
or within a certain radius of the stand boundary. All
stems that were within this radius of each point were
selected. Radii were used to correspond to circular
plots of 0.01 hectares. An example of this type of sam-
ple is shown in Figure 1.

Zigzag-line transects
Zigzag-line transects (also known as Z-plots) can be ar-
ranged with equal angles, but this introduces a coverage
bias. The Zigzag-line approach used here was an equal-
spaced sampler as this has satisfactory coverage proper-
ties (Strindberg and Buckland 2004). Each transect was
2 m wide and each sample contained all the stems that
fell within all transects. Z-plots are an effective way of
traversing a small stand or woodlot in a single pass,
while ensuring good coverage in a repeatable procedure.

Grid-based plots
A grid (with random origin and orientation) that extended
beyond the stand boundary was overlaid onto the stand.
All stems within a certain radius of each grid point within
the stand were selected along with stems within a certain
radius of grid points at a set distance from the stand
boundary. Radii were used that corresponded to circular
areas (plots) of 0.01, 0.02, 0.04 and 0.08 hectares, which
provided four separate samples. Each selected stem was
labelled with its grid point reference to facilitate cluster
analysis. Grids are commonly used when planning planta-
tion forest inventory as they usually result in good cover-
age and are simple to navigate.

Single-point sample
A random point was selected within the stand and
the closest stems (for the required sample size) were
selected. This would be a valid procedure if it is as-
sumed that there is no effect of location/stand edge
on stem volume.
Several existing methods for adjusting for stand-

edge sampling have been shown to provide improved
estimates (West, 2013), but incorporating such methods
into the simulations outlined above would increase
their complexity. Instead, a simpler method was ap-
plied whereby sample plots whose centres lay outside
the stand were included in any sample only if they
intersected the stand boundary (Flewelling and Iles
2004, Schmid-Haas 1982).
All nine sampling methods (including the four differ-

ent plot areas arranged on grids) were applied to each
stand. Tests using different start points for the same
stand and/or sampling method showed that a thousand
samples would produce an average mean stem volume
with a coefficient of variation around 0.1%. This amount
of variation was considered small enough not to mask
any practical differences among methods. A thousand
samples were drawn from random start points for each
combination of stand and sampling method.
For the four small stands (2, 3, 4, 5), an average of 70

stems was selected in each sample while an average of 200
stems was selected in the large stand (Stand 1). Having
similar sample size by method within stand affords easier
comparison between methods in terms of measurement
effort. Sample stems were selected without replacement.
For each sample, the mean and confidence interval of

stem volume were calculated by treating the selected
stems as a simple random sample (SRS). That is, the
standard error was calculated as:

s�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

n
1−

n
N

� �r
ð1Þ

where s2 is the sample variance, n is the number of
stems sampled and N is the number of stems in the stand.
Confidence intervals for each sample were formed as:

�x � t0:975;n−1s�x ð2Þ

where �x is the estimated mean stem volume and t is a
Student’s t-test value.
Those samples selected using plot-based methods

(quasi-random groups and grid-based) were also ana-
lysed as cluster samples using a ratio estimator. Clus-
ter sampling saves costs by measuring a number of
stems at each sample point and is more robust in the
presence of spatial correlation between stems. How-
ever it is less efficient than random sampling and will
produce estimates with poorer precision for the same
number of measured stems.
Under cluster sampling using a ratio estimator, the

mean stem volume is estimated as:

Xn

i¼1
yiXn

i¼1
Mi

ð3Þ



Table 2 Simulation Results1 by Stand

Stand Sampling Method Bias (%)2 Design Effect Reliability -SRS (%) Reliability – Cluster (%)3

1 Random −0.28 1.000 94.6

1 Stand-boundary ***13.52 0.624 0.1

1 Quasi-random group 0.08 0.967 94.8 93.8

1 Zigzag line −0.12 1.019 94.5

1 Grid (0.01 ha plot) 0.14 1.043 94.3 91.4

1 Grid (0.02 ha plot) −0.11 0.934 95.2 93.8

1 Grid (0.04 ha plot) 0.11 1.025 94.5 91.0

1 Grid (0.08 ha plot) *0.23 1.114 94.1 90.8

1 Single- point −0.28 2.311 81.2

2 Random −0.12 1.000 94.2

2 Stand-boundary ***12.77 0.650 9.0

2 Quasi-random group ***-0.98 1.161 91.2 83.8

2 Zigzag line ***-0.74 0.844 95.8

2 Grid (0.01 ha plot) 0.10 0.776 97.7 92.1

2 Grid (0.02 ha plot) 0.24 1.073 95.5 88.3

2 Grid (0.04 ha plot) 0.20 1.100 93.5 89.8

2 Grid (0.08 ha plot) 0.06 1.368 92.1 88.8

2 Single-point 0.12 3.551 63.0

3 Random 0.06 1.000 94.0

3 Stand-boundary ***2.83 0.378 95.9

3 Quasi-random group **-0.28 1.087 93.9 82.1

3 Zigzag line **0.26 0.780 96.4

3 Grid (0.01 ha plot) −0.09 0.924 94.9 84.9

3 Grid (0.02 ha plot) 0.15 0.767 96.7 85.9

3 Grid (0.04 ha plot) **0.34 1.651 88.0 66.8

3 Grid (0.08 ha plot) −0.06 1.713 84.7 65.1

3 Single-point ***-0.47 1.314 89.7

4 Random −0.13 1 94.8

4 Stand-boundary ***11.54 0.487 13.8

4 Quasi-random group −0.07 0.922 96.8 89.7

4 Zigzag line ***-0.99 1.070 93.4

4 Grid (0.01 ha plot) 0.30 1.050 95.2 86.8

4 Grid (0.02 ha plot) **0.43 1.112 94.7 82.6

4 Grid (0.04 ha plot) 0.10 0.940 96.6 83.2

4 Grid (0.08 ha plot) −0.23 1.411 90.2 72.0

4 Single-point ***-2.78 1.120 87.9

5 Random −0.10 1.000 95.2

5 Stand-boundary ***12.76 0.644 4.1

5 Quasi-random group 0.14 1.124 94.4 87.0

5 Zigzag line ***-0.72 1.264 90.1

5 Grid (0.01 ha plot) 0.21 1.566 89.6 82.7

5 Grid (0.02 ha plot) 0.18 1.176 93.5 86.2
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Table 2 Simulation Results1 by Stand (Continued)

5 Grid (0.04 ha plot) 0.30 1.642 91.5 78.3

5 Grid (0.08 ha plot) −0.15 1.192 93.4 81.4

5 Single-point ***-1.16 1.820 83.2
1Each row in this table is a summary of the thousand samples drawn from the respective stand under the specified sampling method.
2Where the Bias is significantly different from zero, the level of significance is indicated by asterisks; *, ** and *** indicate 5, 1 and 0.1% respectively.
3Reliability under cluster sampling is calculated only for the plot-based methods.
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where yi is the cluster total volume and Mi is the stem
count of the ith cluster. This is identical to the SRS esti-
mate. The variance of the estimate is:

N N−nð Þ
M2n n−1ð Þ

Xn
i¼1

yi−�xMið Þ2 ð4Þ

where N and n are the number of clusters in the popula-
tion and sample respectively and M is the number of
stems in the population. This is a function of the vari-
ation only among cluster totals and so will be minimised
if clusters are similar. A confidence interval was con-
structed around �x.
Analysis of the samples from each combination of stand

and sampling method provided the following statistics:
Figure 2 Bias in the estimate of stem volume for eight of the sampling m
volume, as a percentage of the average estimate, by stand and sampling m
shown as the bias was an order of magnitude larger than for most other m
Bias
The bias is the mean of the thousand sample estimates
of mean stem volume, minus the population mean, as a
percentage of the mean of the estimates. The signifi-
cance of the calculated Student’s t-test statistic (which
tests H0, i.e. the mean of the sample estimates equals the
population mean) was also calculated.
Design effect
To give an indication of the efficiency of a sampling
method, the ratio of the variance of the estimate to the vari-
ance of the estimate from the random sample was formed.
Design effects less than one indicate improvements in effi-
ciency that may be due to the spatial coverage of the
sample.
ethods studied. Bias in the average sample estimate of mean stem
ethod. Results from the Stand-boundary sampling method are not
ethods.
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Reliability-SRS
This is the percentage of samples that contained the popu-
lation mean in their individually calculated SRS 95%
confidence interval. For one thousand samples, this per-
centage is expected to lie in the interval from 93.6% to
96.4%.

Reliability-cluster
The same approach was used here as for the SRS Reli-
ability but using the 95% confidence interval from the
cluster analysis.

Results and discussion
Results from the simulations for all stands are shown in
Table 2. Sampling the stand boundary produced a biased
estimate for all five stands tested. The average overesti-
mate for the four older stands (1, 2, 4 & 5) was 12%
(range 11.54 – 13.52). Results for the younger stand
(Stand 3) showed less bias (2.83%), which is possibly due
to recent thinning of this stand that minimised the dif-
ference between the boundary and interior stems. The
magnitude of this difference is likely to depend on the
proximity and age class of adjacent stands as well as the
time the edge stems have had to respond to their grow-
ing conditions.
Figure 3 Reliability (SRS) for eight of the sampling methods studied. The p
mean, by stand and sampling method. For 1000 samples, this percentage i
Stand-boundary sampling method are not shown as the reliability was less
The remaining sampling methods showed little bias.
Most estimates were within ±0.5% of the population mean
(Figure 2), although the Single-point sampling method
was clearly less accurate than the others. The Zigzag
method produced a significantly biased estimate for
four of the five stands. This may be due to a subtle
under-sampling of the stand edge, although the bias in
all stands was within ± 1%.
Design effect indicates the efficiency of the design rela-

tive to a SRS. There appears to be no consistent im-
provement in efficiency by explicitly including spatial
coverage in the sampling design (Table 2). Quasi-
random, Zigzag, and Grid 0.01, 0.02, and 0.04 ha groups
all showed a range of design effects centred near a value
of 1. However, there is indication of a loss in efficiency
as plot size exceeds 0.04 ha (Table 2). In the stands used
in this study, sample designs with plots larger than
0.04 ha are likely to require an increased sample size to
compensate for the drop in efficiency if the same level of
precision is required.
Under SRS, grid plots greater than 0.02 ha generated

less reliable estimates of the confidence intervals than
smaller plots (Figure 3). The most reliable, spatially dis-
persed method was that for grid-based 0.02 ha plots.
This result is similar to the results of Morrison et al.
ercentage of SRS confidence intervals that included the population
s expected to lie in the interval from 93.6% to 96.4%. Results from the
than 14% in all but Stand 3.
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(2008) who found “grid-based systematic designs were
more efficient and practically implemented” than other
methods that were compared in a simulation study of
sampling rare populations. Theoretical studies (Comas
et al. 2011) have also pointed to the worth of using a
sampling grid for clustered populations.
The reliability of the confidence intervals of the clus-

tered samples calculated using the ratio estimator was
poor (Table 2). All these confidence intervals were overly
optimistic with most methods showing reliability values
of less than 93%.

Conclusions
As expected, sampling the stand boundary produced an
over-estimate of stem volume. Stand-edge stems were
about 12% larger than interior stems in stands 1, 2, 4
and 5 (aged 22 to 26 years old).
Most sampling methods produced little bias and good

reliability when data were analysed in the form of simple
random samples. This result provides the inventory for-
ester with some scope to design sampling procedures
that will be practical and operationally efficient while
avoiding bias and still producing reliable confidence in-
tervals. Plots 0.02 - 0.04 ha in size, located systematically
on a grid with random orientation and origin, gave some
of the most unbiased and reliable estimates. However,
the Zigzag sampling method may be appropriate for
small stands as it shows little bias, good reliability and is
likely to be operationally efficient.
Reliable estimates of mean stem volume were obtained

using simple random samples even though this approach
disregards the clustered nature of plot-based samples. It is
possible that the low stand density minimised any spatial
correlation among stems in the stands studied, so it would
be informative to test this explicitly and repeat the simula-
tions in stands covering a range of stand densities.
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