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ABSTRACT

Measuring the height of a tree takes longer than measuring its diameter at
breast height and often the heights of only a subset of trees of known diameter
are measured in forest inventories. Accurate height-diameter equations must
therefore be used to predict the heights of the remaining trees. Two trees
within the same stand and that have the same diameter are not necessarily of
the same height; therefore we developed a deterministic equation, using the
Schnute function, and then added a stochastic component to it, to mimic the
real natural variability in height. The stochastic approach uses the standard
error of a new observation in a similar way to the method of obtaining the
prediction interval for an individual (new) in a regression model, but rather
than using the ¢ value corresponding to a fixed limit for all the trees, it uses
a pseudo-random number having a normal distribution N(0,1) for each
observation. The stochastic approach was evaluated with data from four
thinning trials located in single-species, even-aged stands of the most
commercially important pines in Galicia (north-western Spain). More realistic
height predictions were obtained than with the deterministic model for
individual diameter classes, as demonstrated by the results of the Kolmogorov
Smirnov test and by visual analysis of box plot graphs.
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INTRODUCTION

Individual tree heights and diameters are essential measurements in forest inventories,
and are used for estimating timber volume, site index, and other important variables
related to forest growth and yield, succession, and carbon budget models (Peng
2001). Moreover, when combined with crownratio data or models, height-diameter
equations can be used to predict tree height and to estimate the change in crownratio
to be incorporated in individual tree growth models. Although the time taken to
measure tree heights has been reduced by the use of devices that employ ultrasound
orlaser pulses to measure distances, it still takes longer than measuring the diameter
at breast height. For this reason, often the heights of only a subset of trees of known
diameter are measured, and accurate local height-diameter equations must be used
to predict the heights of the remaining trees to reduce the costs involved in data
acquisition. These equations use diameter at breast height as the only predictor
variable for estimating total height. Therefore, accurate prediction of tree heights
iscritical in forest inventory, model simulation, and sustainable forest management
decision-making (Curtis 1967; Botkin et al. 1972).

If stand conditions vary greatly within a forest, a height regression may be derived
separately for each stand, or a generalised function, which includes stand variables
to account for the variability, may be developed (Curtis 1967; Zhang et al. 1997,
Schroeder & Alvarez 2001; Lépez-Sanchez et al. 2003; Sharma & Zhang 2004).

Natural processes can be considered as the sum of deterministic and stochastic
components. Knowledge of the deterministic component is obtained from the
model’s functional relationships. The stochastic component represents effects
beyond our present predictive capability, or that are deliberately omitted from the
model (Stage 2003). Thus, if assessment of the variability of the outcomes is one
of the objectives of the modelling procedures, most of the predictive equations
would require a random component.

In this sense, it is well known that trees with the same diameter within the same
stand are not necessarily of the same height. Therefore, a deterministic model does
not seem appropriate for mimicking the real natural variability in height (Castedo
et al. 2005). To deal with this, an unstructured random component can be added to
the deterministic model predictions. This approach assumes that the stochastic
effects are entirely random and unstructured, and adds a normally distributed
random component with variance equal to the residual mean square of a previously
fitted model to the model estimations (Dennis et al. 1985; Fox et al. 2001). Many
other studies have found that incorporation of this random component is important
for preserving variability in predictions (Stage 1973, 2003; Daniels & Burkhart
1975; Stage & Wykoff 1993; Castedo et al. 2005).

In view of the previous considerations, the objective of the present study was to
evaluate the performance of a stochastic height-diameter approach in mimicking
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the observed natural variability in tree height. For that purpose, a large data set of
height-diameter pairs corresponding to stands of the most commercially important
pine species in Galicia (north-western Spain) was analysed.

MATERIAL

We used data from the first measurement of four thinning trials established in
single-species, even-aged stands located throughout Galicia to evaluate the
height-diameter stochastic approach. The first trial was established in Fonsagrada
(province of Lugo), in a 40-year-old stand of Scots pine (Pinus sylvestris L.). The
second trial was established in O Carballifio ( province of Pontevedra) in a 12-year-
old stand of maritime pine (Pinus pinaster Ait.). The third and fourth thinning trials
were established in Begonte (province of Lugo) intwo 12-year-old stands of radiata
pine (Pinus radiata D. Don), which differed in seed origin (New Zealand and local).
Each thinning trial consisted of 12 plots of 625-900 m?, in which four thinning
regimes were evaluated on three different occasions. The stand conditions within
each thinning trial were similar and thus we considered the data obtained as
belonging to only four different stands corresponding to the four different thinning
trials.

Diameter at breast height (d) was measured to the nearest 0.1 cm in all the trees.
Total tree height () was measured to the nearest 0.1 m in a sample of one-third of
the trees in each plot. Summary statistics, including the mean, minimum, maximum,
and standard deviation (SD) of these variables are shown in Table 1.

TABLE 1-Characteristics of the tree samples used for model fitting.

Thinning trial Number Diameter at breast height Total height
of trees (cm) (m)
Mean Min. Max. SD Mean Min. Max. SD
Pinus sylvestris 488 224 7.0 348 72 196 9.6 254 28
Pinus pinaster 1062 112 29 19.8 33 92 48 124 12
Pinus radiata
New Zealand 651 13.7 5.0 266 4.8 114 47 170 23
Pinus radiata
Local 668 146 3.1 295 5.6 122 5.1 188 2.6
METHODS

Candidate Models

A large number of local height-diameter equations have been reported (e.g., Curtis
1967; Garcia 1974; Wykoff et al. 1982; Huang et al. 1992, 2000; Fang & Bailey
1998; Peng 1999; Soares & Tomé 2002; Temesgen & Gadow 2004), most of which
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exhibit S-shaped or concave-shaped patterns. The selection of a functional form for
the height-diameter relationship should consider the following mathematical
properties: (1) monotonic increment, (2) functional inflection point, and (3)
asymptotic value (Lei & Parresol 2001). The number of parameters (flexibility),
possible biological interpretation of the parameters (e.g., upper asymptote, maximum
or minimum growth rate), and satisfactory predictions for height-diameter
relationships are also important features (Peng 2001). Sigmoid or S-shaped
functions are preferred because they posses all three of the above properties.
However, if a data setincludes only larger or older trees beyond the inflection point,
then a model generating a concave curve will probably work best, although it may
perform poorly in the lower range where there are no data (poor extrapolation
properties) (Lei & Parresol 2001).

Initially, we considered four non-linear growth functions — Bertalanffy-Richards
(Bertalanffy 1949, 1957; Richards 1959), Korf (cited by Lundqvist 1957), Weibull
(1951), and Schnute (1981); these have frequently been used for describing the
height-diameter relationship (see Yang et al. 1978; Zeide 1989; Zhang 1997; Fang
& Bailey 1998; Peng et al. 2001; Sharma & Zhang 2004; Temesgen & Gadow
2004). Preliminary analysis of these models showed that they all provided similar
results. Schnute’s model has an advantage over the other models in that it is easy
to fit and quick to achieve convergence for any database (Bredenkamp & Gregoire
1988; Lei & Parresol 2001), even with small data sets (Castedo et al. 2005), and thus
it was the only one considered for further study:

1 — g~ald—dp) |1

— b b_nLb _
ho= | (= | (1)

where: i = total height of the tree
d =tree diameter at breast height
d; =diameter at breast height of a small tree (lower range of data)
d, = diameter at breast height of a large tree (upper range of data)
h, =parameter representing mean tree height at d;
h, =parameter representing mean tree height at d,
b =incremental acceleration in growth rate
a =constant acceleration in growth rate
¢ =residual error.

In the context of height-diameter modelling it is common practice to force the curve
to pass through the point (0, 1.3) to prevent negative height estimates for small trees,
although in reality, when d is zero, 4 can take any value between 0 and 1.3. This
assumption does not affect the height-diameter relationship because data
corresponding to heights lower than 1.3 are not used in the fitting process. Taking
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into account these considerations, we let d; = 0 and A; = 1.3. This resulted in the
modified Schnute model:
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Model Fitting and Evaluation

A fundamental assumption for the least squares method is that the errors (¢) in
regression models are independent and identically distributed (constant variance)
with a mean value of zero. However, forest modellers are often faced with
heteroscedasticity in their data, which would lead to non-minimum variance
parameter estimates and unreliable prediction intervals. The solution to this
problem is to weight each observation during the fitting process by the inverse of
its variance (0%;). If the variance is unknown, the problem becomes one of
estimating the proper weight for each observation (Parresol 1993).

Scatter plots of total tree height against diameter at breast height showed an
increasing variance in height as the values of the independent variable increased,
forthe P. radiata data sets. This type of heteroscedasticity is common and is usually
modelled as a power function (Draper & Smith 1981; Neter ef al. 1996). The base
of the exponent was selected as d, that is, 0%; = d¥. The most reasonable value of
the exponential term & should provide the most homogeneous studentised residual
plot (Huang et al. 2000), with a reduction in the standard errors of the estimates as
compared with the parameter estimates of the unweighted model (Parresol 1993).
The k£ number can be obtained by iteratively testing different values (e.g., from 0.1
to 2). An alternative theoretical optimisation of k£ can be achieved using the method
suggested by Harvey (1976), which consists of using the estimated errors of the
unweighted model (&) as the dependent variable in the error variance model, that
is:

82 = yd* (3)
or

In€Z = Iny + kInd; 4)

The k parameter of Equation (4) was estimated using linear regression. Parameters
of Equation (2) were estimated using generalised non-linear least squares (GNLS),
also known as weighted non-linear regression, using the NLIN procedure of SAS/
STAT® (SAS Institute Inc. 2004). The weight function was specified with the
option _WEIGHT_=1/d*,

The goodness-of-fit of the model was evaluated using two statistics: the coefficient
of determination for non-linear regression (R?) and the root of the weighted mean
squared error (RMSE,,). Although several shortcomings have been stated against
the use of the R? in non-linear regression (Neter ez al. 1996), the general usefulness
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of some global measure of model adequacy would seem to override some of those
limitations (Ryan 1997, p. 424). The expressions for these statistics are as foilows:

R2=r%y; 5)
[ Spthi— iy’
RMSE,, =V g =y ©6)
n-p

where r;, ;. is the correlation coefficient for a linear regression between the measured
(h;) and estimated (ﬁi) values of the dependent variable (see Ryan 1997, pp. 419 and
424); 1, is the weight function; » is the total number of observations used to fit the
model; and p is the number of model parameters.

Another important step in the evaluation of the fitted models was to perform a
graphical analysis of the residuals, searching for dependencies or patterns that
indicated systematic discrepancies.

Stochastic Height Prediction

Basically, the variance components from a regression model linked with random
numbers with a certain distribution can be used to create a stochastic prediction.

In matrix notation, a general non-linear model can be written as:
y=fX,p)+e (M
where y is a vector of the dependent variable (total height of the tree in our case),

X is a non-stochastic matrix of tree variables, B is a vector of unknown parameters,
and ¢ is a vector of random errors.

The generalised non-linear least squares (GNLS) estimate of the vector B is the
value that minimises the sum of squared errors:

SSE(B) =&y (8)~'e = [y - fX,B)1p (8)'[y — f(X,B)] ®)
where 1 (&) is a diagonal matrix of weights that is dependent on a fixed number ¢
of parameters denoted by the (g x 1) vector 8. The dimension of 0 and the precise
way in which 1y depends on 0, depend on the assumptions made about the error
process. Under suitable conditions, the GNLS estimate b will be approximately
normally distributed, with mean p and variance-covariance matrix that is consistently
estimated by:

S%(b) = RMSE} [Z(b) p(®)'Z(b)]" )

where the scalar RMSE,? is the weighted regression mean squared error, i.e.,
Equation (8) divided by the degrees of freedom:

SSE() _ [y - f(X,b)] Pp(6)! [y - f(X.b)]

RMSE2 =
n—p n—p

(10)
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and Z(P) is the partial derivatives matrix with respect to each parameter:

9 (x1.B) 9f (x1,B)

3[31 eee 3/3[,
ZP) = : : (11)
of %ph) 3 (%,B)
aﬁl aﬁp

This information can be used to form tests of hypotheses and interval estimates for
b in a similar way to that for linear least squares methods.

In the special case where we want to know the prediction interval for an individual
(new) outcome drawn from the distribution of y;, the variance is:

Var@iew) = RMSE? y(8) + z(b)’; S? (b) z (b); (12)
where wi(é) is the ith diagonal element of the estimated weight matrix lp(é) i.e., the

value of the weight function at observation 7, and the partial derivatives vector z(b)';
is the ith row of Z(b) (see Equation (11)).

Thus, the prediction interval for a new observation drawn from the distribution of
y;is:

j)i = Za/Z,n—psj)i(new) (13)
where 83, is the standard error of prediction of a new observation, obtained from
Equation (12) as:

S5 = Y VTG, ) =V RMSE 2 1 (6) + 2(b)’, S(b)z(b), (14)

The stochastic approach uses this standard error in a similar way to how the
prediction interval is obtained for an individual (new) in aregression model. Instead
of using the ¢ value corresponding to a fixed limit for all the trees, e.g., —1.96 and
1.96 respectively for a probability of 2.5% and 97.5% and infinite degrees of
freedom, it is substituted by a value randomly generated from the inverse of the
normal distribution function for each individual. Thus, the expression used to
assign stochastically the height to each tree in a sample is:

Ficstoeny = Ji + Fi7" S 5,00 (15)
where $jsocn) 18 the stochastic height estimation, J; is the deterministic height
obtained from Equation (2) (the fitted model without considering the stochastic
component), F7! is the inverse of the standard normal distribution function for U
—auniformrandom variable in the interval (0,1)—and s Sitnew) is the standard error

of prediction for a new individual.

The Fj' values were obtained through the NORMAL(SEED) function in
SAS/STAT®package (SAS Institute Inc. 2004). The NORMAL functionis a scalar
function that returns a pseudo-random number having a normal distribution, with
amean of 0 and a standard deviation of 1. The function requires an initial starting
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point, called a seed, which either the user or the computer clock supplies, and which
must be a non-negative integer: if a positive seed is used, it is possible to replicate
the stream of random numbers, while if zero is used as the seed, the computer clock
initialises the stream and it is not replicable. A zero value was used as seed in the
present study.

The performance of the stochastic approach proposed was evaluated for diameter
classes of 5 cm width and for each thinning trial. A comparison between the
observed height frequencies and the variability of the deterministic and stochastic
approaches was carried out. The Kolmogorov-Smirnov test was used to compare
the observed and the estimated height frequencies of the two approaches. Box plot
graphs were used to visually contrast the means, medians, and 25/75 percentiles of
the height distributions.

RESULTS AND DISCUSSION
Model Fitting and Evaluation

As unequal error variance occurred in the P. radiata height-diameter data, GNLS
techniques with the weights chosenas_WEIGHT_=1/d%33¢and_WEIGHT_=1/d 9526
were applied for stands of New Zealand and local seed origin, respectively. These
weight functions stabilised the variance and provided a homogeneous residual plot
over the full range of the predicted values (Fig. 1).
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FIG. 1-Plots of the studentised residuals against the predicted heights for the four
data sets.
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Although in general the Schnute function provided a reasonable fit, taking into
account the great variability in the height-diameter relationship in the databases,
notable differences were found among the predictive abilities for each species. The
models produced satisfactory fits for the P. radiata thinning trials; however, the
percentage of variability explained by the model was low for the P. pinaster and
P. sylvestris data sets (see Table 2). All the parameters were significant at the p =
95% level and showed reasonable values.

TABLE 2-Parameter estimates (standard error in brackets) and goodness-of-fit statistics
for the Schnute (1981) model and the four data sets under analysis.

Thinning trial Weight Parameter estimates R? RMSE,,
function
a b h2
Pinus sylvestris 1 0.1069 0.9516 21.9859 0.5188 1.918
(0.0176) (0.2575) (0.2805)
Pinus pinaster 1 0.0896  1.9051 10.9793 0.5091 0.828

(0.0246) (0.3197) (0.1536)
Pinus radiata
New Zealand 1/d0-336 0.0618 1.2779 15.1430 0.7513 1.134
(0.0155) (0.1817) (0.2136)
Pinus radiata
Local 1/40-526 0.0551 1.2979 16.7094 0.7880 1.214
(0.0120) (0.1432) (0.2545)

Stochastic Height Prediction

Deterministic values of the height $; were obtained using Equation (2) with the
parameter estimates obtained for each data set (see Table 2). The prediction of the
stochastic values ;ocny also involved the following steps:

(1) Calculation of the standard error of the prediction s, new) by means of Equation
(14), whichrequires obtaining the variance-covariance matrix of the parameter
estimates S%(b) (Equation (9)). The partial derivatives vector z(b); and its
transpose z(b)'; can be obtained by substituting the estimated parameters in the
partial derivatives of Equation (2) shown in the Appendix.

(2) Calculation of the inverse of the standard normal distribution function for one
pseudo-random number in the interval (0,1).

(3) Estimation of the stochastic height ;ocn) from Equation (15) by substituting
the values obtained in the previous steps.

Comparison of the observed, deterministic, and one random stochastic height
distribution per diameter class showed substantial differences between the two
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approaches, even though the mean height values per diameter class obtained by
each approach were very similar (Fig. 2, Table 3). The observed height distribution
generally followed a normal distribution within diameter classes with ahigh degree
of variability in the four data sets evaluated. This was particularly true for the
P. radiata data sets. This may be explained by the earlier differentiation of trees in
crown classes in P. radiata than in P. pinaster plantations. In the latter, the delay
of differentiation of crown classes due to lower height growth and lower sensitivity
to competition resulted in a more similar growth pattern for all trees. The
P. sylvestris stand showed intermediate behaviour; although the biological rate of
height development of P. sylvestris is lower than that of P. pinaster, the former is
more affected by competition, and the age of the stand is almost three times that of
the P. pinaster stand. The deterministic estimate provided a height distribution with
low variability located around the observed mean value, whereas the random
stochastic approach provided greater variability, consistent with the observed
distribution. This is evident in the values of the Kolmogorov-Smirnov test for each
diameter class (Table 3) and in the interquartile and maximum ranges of the
distributions (Fig. 2).
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FIG. 2-Box plots of height distributions (Y-axis) against diameter classes (X-axis)
for the four data sets. The triangles represent the means of height estimates.
The boxes represent the interquartile ranges. The maximum and minimum
height estimates are represented by the upper and lower small horizontal
lines crossing the vertical bars, respectively. In white: observed distribution;
in light grey: deterministic estimation; in dark grey: stochastic estimation.



31

Barrio-Anta er al. — Mimicking natural variability in tree height

10°0 = d ¥e 90ueo1IudIS SOILOIPU 44
G0"0 = d 1e 20uRDIUTIS SAIBOIPU]
$991) JO IoquINU = U

— — — - — — %*C90°0 (4344 18 §'Te
+160°0 €LT0 [44 — — — — %900 62C0 96 §'LT
+£L0°0 ¥ST°0 0r1l *L¥0'0  2ETO 98 — — *¥L0°0 9570 ¥4 gee
#x[L0°0  LYTO 0LI *1600  ¥ET0 361 691°0 £97°0 8v1 681°0 €0 111 S'LT
+9¥0°0 8210 81¢ %6200 S0T0 34 0800 19T°0 608 6120 Preo 9 ¢l
%*860'0  #x6L0°0 8¢l *SP0'0 69170 1% *%670°0 L6T0 068 %xL9T°0 1234Y 9 S'L
x00C°0  *%00¢0 01 — — ANt PEe0 S1 - — 4

YoolS  WIela(] u YOOlS U] u YOOIS  wRle(] u Yool§  wIsleg u
(wo)
18001 pUR[BaZ MaN] LY i) 0
DIIPY.L SHULY DIDIPD.L SNUL da3spurd snuig srsaads snurd ssep)

"UoNNQLISIP PIAISQO ) WO APJUBSTUSIS IQFJIP JOU S20P UOINqLISIP

pajorpaid Sy Jey) Ueaw 1S9 STY) UT PAUTEIGO SenfeA JUedjIuSIS uonnquusip 1yS1oy paAIasqo ay) yirm sayoeoidde snseyools pue
OISTUTULIRIP 9Y) JO suonngLysip JyStey pajorpaid oy Surreduos ‘sesse[o IojoWRIp J0J 159) AOUIIWS-A0I0S0W[0Y] oyl JO SHNSIY—¢ FTIV.L



32 New Zealand Journal of Forestry Science 36(1)

The above results suggest that the stochastic approach allows mimicking of the
natural variability in tree height within diameter classes, providing more realistic
height predictions at stand level. This is necessary when height-diameter models
are used to fill in the missing height measurements, because deterministic models
smooth the tree height estimations and eliminate the observed variation.

This is also important in stand-level growth models (e.g., Knoebel et al. 1986;
Diéguez-Aranda et al. 2006), which use height-diameter functions to estimate the
height of the average tree in each diameter class. By using the stochastic approach
it is possible to obtain more realistic predictions of variables that depend on the
estimated heights (e.g., volume, biomass, carbon pools).

CONCLUSIONS

The relationship provided by the Schnute function is biologically reasonable.
Unrealistic height predictions should not occur beyond the range of the empirical
observations.

The relationship between tree height and diameter is one of most important
elements in natural and managed forest dynamics and structure. However, a
deterministic model is not capable of completely describing the nature of the
height-diameter relationship. Thus, if real variability is required, a stochastic
component should be added to the deterministic estimation.

The suggested approach improves the realism and accuracy of height predictions
at stand level. This feature is considered very important because stand growth level
models used for these species in Galicia are disaggregated by diameter classes to
estimate merchantable volume and biomass using taper functions and individual
tree biomass equations (Merino et al. 2005).

Many models in forestry are deterministic and predict the most likely outcome.
While this may not matter much in models corresponding to homogeneous
industrial plantations, it may be a serious deficiency in sustainable forest management
in which decisions are based on models that attempt to address natural variability
or ecological succession (Vanclay 2003).

The stochastic approach proposed can also be used in most situations where
different predictions are required for the same values of the independent variables.
Otherwise, the mean and distribution of the final estimates would be biased. Ineach
situation, the process should involve the study of the specific distribution function
to be used for generating variability in the simulated data because models with a
strong basis in scientific knowledge of the processes represented should behave
more realistically than models with a structure determined by statistical analysis
that has not been guided by the same scientific knowledge (Stage 2003).
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